
First Steps on an On-Ground Autonomy Test
Environment

Pablo Muñoz∗, Amedeo Cesta†, Andrea Orlandini† and María D. R-Moreno∗
∗Departamento de Automática, Universidad de Alcalá

28805 Alcalá de Henares (Madrid), Spain
Email: {pmunoz, mdolores}@aut.uah.es

†CNR – Italian National Research Council, ISTC
00185 Rome, Italy

Email: {amedeo.cesta, andrea.orlandini}@istc.cnr.it

Abstract—Thanks to the advances in Artificial Intelligence
(AI), and in particular in automated planning & scheduling
and execution, goal-oriented controllers have being developed
to test degrees of autonomy for robotics systems in challenging
scenarios. Despite these efforts, there is a lack of methodology
for approaching the design of deliberative systems or the choice
of the critical parameters or metrics under which the control
systems can be compared during execution or deliberation.

This paper presents the first initial results of the On-Ground
Autonomy Test Environment (OGATE) over a year after its
initiation. It is an ESA funded project that aims to facilitate
accurate experiments on planning and execution systems for
robotics. We present features of an initial instance of such system
built to support the GOAC robotic software, an ESA project to
demonstrate key concepts in autonomy for ESA missions

I. INTRODUCTION

The advances in both hardware and software technologies
have been translated in the exponential growth of the available
functionalities in many real applications, and in particular, in
robotic systems. As a result of deploying advanced robotic
systems in unknown and dynamic environments, the control
software required to achieve the mission goals shall deal with
an important number of constraints. Thus, the advances in the
Artificial Intelligence (AI) field seem to be naturally merged
with the control of robotic systems in order to allow it to
generate long term plans without (or little) human interaction.
In this way, developments in planning and scheduling systems,
such as task planning [1], [2], CSPs [3]–[5], timelines [6]–[12]
and, recently, the efforts interleaving planning and execution
[13]–[15] could be very valuable to control robots in dynamic
environments with an increasing degree of autonomy.

These AI controllers are the top layer of complex tools that
are usually made ad-hoc to control a specific robotic platform
to perform determinate missions. Usually, to test and verify
the correctness of an architecture, a small set of missions are
carried out. Also, some parts of the control system could be
evaluated in a standalone manner via particular test beds. But
testing the robustness, adequacy and performance for the whole
control architecture cannot be easily done; it requires to collect
and to analyze relevant data from all the parts of the control
system while the test bed covers more cases than the typical
scenarios. This is currently an open and interesting problem in
which not much work has been already done.

In this paper we present the first prototype of the On-
Ground Autonomy Test Environment (OGATE) after one year
of its initiation. OGATE is funded by the ESA Networking
and Partnering Initiative Cooperative Systems for Autonomous
Exploration Missions. It aims to provide testing support while
developing controller systems for space robotics missions.
The OGATE environment would constitute an entry point to
investigate these open problems in autonomous controllers
as the combination of an engineering effort, identifying the
requirements, designing and implementing a general environ-
ment to provide testing and verification tools for autonomous
controller systems; and a research effort to discriminate the key
factors in research on planning, scheduling and execution in
order to evaluate the performance of autonomous controllers.

We also aim to provide support for ground segment facility
in space robotics missions, hiding the complexity of the con-
trolled system to the user. So, in the paper, the space robotics
context is exploited as a real-world scenario, employed to test
different solutions for deliberation and execution under the
same conditions.

The paper is structured as follows: next section describes
a space robotic scenario related to the GOAC project and
exploited as a case study. Then, the objectives of the system
are presented and, in the following, a brief description of
OGATE and its functionality is described. The presentation of
an initial deployment of the system and a description of what is
a plug-in component for OGATE are given. And finally some
conclusions are outlined.

II. A SPACE ROBOTIC CASE STUDY

Our interest in plan-based autonomy is also related to a
recent participation in the Goal Oriented Autonomous Con-
troller (GOAC) [16] project: an ESA effort to create a common
platform for robotic software development. In particular, the
GOAC effort combines several technologies: (a) a timeline-
based deliberative layer which integrates a planner, called
OMPS [10], built on top of APSI-TRF to synthesize timelines
and revise them according to execution needs, and an executive
a la T-REX [15]; (b) a functional layer [17] which combines
a state of the art tool for developing functional modules of
robotic systems (GenoM) with a component based framework
for implementing embedded real-time systems (BIP).

The GOAC system allows one to implement controllers



in a flexible way, i.e., for each robot or mission a different
instance of the T-REX system can be deployed defining various
cooperating reactors and their associated interactions, provid-
ing a scalable architecture. A T-REX agent is composed by
a hierarchy of deliberative reactors. Each deliberative reactor
has its own deliberative scope as well as planning latency
and look-ahead, in charge of controlling a particular aspect
of the mission and, interacting with other reactors sending
goals and receiving observations. Then, a reactor exploits a
planning system to generate plans and to monitor the exe-
cution following a sense-plan-act paradigm for goal oriented
autonomy. It allows a divide and conquer approach in which
the scope of each deliberative reactor could be refined by other
more specific reactors. Firstly, the planning system employed
in the T-REX deliberative reactors was the EUROPA2 planning
and scheduling framework [7], [18]. For the GOAC project the
planning system was replaced by the OMPS planning system,
which exploit the APSI-TRF execution facilities.

Figure 1 represents a possible instance of the GOAC
architecture. In the figure appears two deliberative reactors
each one with its own planner and model over which to
deliberate. These reactors are interconnected between them,
and also, with a command dispatcher reactor. This one is in
charge of sending commands to the functional layer (generally
composed of different functional modules), while retrieving
the observation and propagating them along the other reactors.
With these data, the different deliberative reactors, using their
respective deliberation models, could dynamically adapt their
plans to the new circumstances.

Fig. 1. Representation of a GOAC instance

Within the GOAC initiative, the DALA rover has been
considered to simulate a robotic scenario as close as possible
to a planetary exploration rover. DALA is one of the LAAS-
CNRS robotic platforms that can be used for autonomous
exploration experiments. In particular, it is an iRobot ATRV
robot that provides a large number of sensors and effectors. It
can use vision based navigation (such as the one used by the
Mars Exploration Rovers Spirit and Opportunity), as well as
indoor navigation based on a Sick laser range finder.

In this regard, DALA can be considered as a fair repre-
sentative for a planetary rover equipped with a Pan-Tilt Unit
(PTU), two stereo cameras (mounted on top of the PTU), a
panoramic camera and a communication facility. The rover
is able to autonomously navigate the environment, move the
PTU, take high-resolution pictures and communicate images
to a Remote Orbiter.

The considered mission goal is a list of required pictures
to be taken in different locations with an associated PTU
configuration, and to communicate them to an Orbiter when it
is visible to the robot. Also, the rover must operate following
some operative rules to maintain safe and effective configu-
rations (the reader may refer to [16] for further details). To
deal with the objectives and the operative rules, the OMPS
deliberative is in charge of synthesizing a sequence of actions
that, starting from the environment state, robot state and goals,
reach a final state in which the goals are satisfied.

A possible mission actions sequence is the following:
navigate to one of the requested locations, move the PTU
pointing at the requested direction, take a picture, then, com-
municate the image to the orbiter during the next available
visibility window, put back the PTU in the safe position
and, finally, move to the following requested location. Once
all the locations have been visited and all the pictures have
been communicated, the mission is considered successfully
completed.

Within the GOAC project was also exploited the ExoMars
rover model using the ESA 3DROV simulator suite [19] that
allows early-stage virtual modelling of terrain and mobile
robots systems. The system is composed of multiple modules
connected through standardized interfaces, being the most
important the Simulation Framework, that is the ESA’s Simsat,
responsible for the execution and scheduling of the simulation
and the Generic Controller that manages the onboard flight
software to enable to connect software modules to control the
rover. Also, it includes the Environment block in charge of
the timekeeping, terrain and atmospheric conditions, and the
Visualization Environment, a front-end that provides real-time
visualization of the simulation progress.

III. ON-GROUND SUPPORT FOR AUTONOMOUS CONTROL

The current investigation is triggered in the space environ-
ment where the use of software for on-board autonomy is often
perceived as loosing control on critical mission components
(namely a space robot, a spacecraft, etc.). For sure current
complexity of software for autonomy is quite high and such
a complexity reinforce the general skepticism toward its wide
use in the space environment. To cope with the problem we
have conceived the idea of creating a software environment to
be used on-ground to facilitate the demonstration and testing of
software for autonomy. Such an environment can also represent
the seed for a future knowledge engineering environment
for autonomous controllers. Indeed the first goals for such
an environment are: (a) facilitating the use of autonomous
controllers; (b) allowing the use of different solution for
autonomous control (e.g., toward a plug-and-play style in
their use); (c) enabling the comparison of different solutions
gathering reliable execution data on a given mission. For the
time being we are also making an additional assumption: we
are focusing our attention toward the deliberative part of the
autonomous control the part that can be referred to as the one
performing “planning and execution” hence we assume that
the physical system is accessible through a functional interface
(in GOAC, a la GenoM [20]) or through a robotic operating
system.

To make our general goal clear let us refer to the space
robot domain introduced above. Our research plan is to develop



an easy-to-use system able to (i) interface different planning
and execution solutions with a same robot (or its simulator)
and (ii) to automatically generate realistic test bed scenarios
presenting an increasing complexity.

Here, we consider missions related to the space robotics
case study. Those missions consist in using a determinate
autonomous control architecture over a robotic platform, return
some science objectives (i.e., scientific pictures) taking also
into account a set of constraints such as the availability time
windows for Remote Orbiter communication, or the time
period in which science targets are available (some events may
be time bounded). The goal is to progressively increase the
difficulty of the missions, aiming to stress the planning and
execution system and, also, to collect performance information
exploiting a real robotic platform like DALA as well as a
simulator suites such as 3DROV [19].

Afterward, we are planning to investigate how different
ways of conceiving the planning and execution task can be
compared. In particular, we need to compare them using
the same functional support, as fig. 2 shows, and identical
missions.

Fig. 2. Different configurations for planning and execution controlling the
same robotic platform

Although we can find stress tests for planning systems
(for example the International Planning Competition (IPC)1

in which PDDL-based planners [21] performance is evaluated
based on quantitative criteria), they are standalone tests in
invariant conditions. This means that there is no interference
due to a dynamic environment (e.g., climate changes, external
agents, new goal opportunities, etc.) or to changes in the
system (e.g., malfunctions or failures) during a mission that
affects directly the planning and execution system. Also,
newest technologies interleaving planning and execution may
use different schemas, for instance, in terms of number of de-
liberative components or their scope and specialization. Then,
a solution plan can also be found by different cooperating
autonomous systems. This entails also the need of investigating
how these schemas potentially affect the planning process.
And, at the best of our knowledge, a methodology to compare
performance metrics in realistic scenarios, such as the space
robotic mission domain considering not-nominal conditions, is

1The IPC is usually co-located with the International Conference of Auto-
mated Planning and Scheduling (ICAPS).

still missing. So, this constitutes an interesting open research
issue.

IV. THE OGATE INFRASTRUCTURE

We can briefly define a mission as a set of goals that
are solvable by an autonomous agent. This autonomous agent
is composed of two parts: i) the platform, which could be
a simulator or a robot, and, ii) the control architecture to
manage the platform, a set of software components that work
together to accomplish the objectives defined in the problem.
So, considering an autonomous agent, one or more of these
components will be a deliberative component, which are
responsible of managing the long term planning to accomplish
the objectives of the mission.

Currently, there exists a high number of technologies
available to define problems for autonomous agents and their
corresponding model of the world (usually called domain),
which produce high level plans, which must be decomposed
in order to be executed by a robotic platform that accepts
low level commands. To deal with the complexity of operating
the platform and controlling the execution and decomposition
of the high level plans, the control architectures are typically
structured in three levels [22]: i) the deliberative layer formed
by one or more deliberative components in charge of the
long term planning and scheduling ii) the low level support,
called functional level that controls the platform using low
level commands, and iii) the executive layer, an intermediate
level that decomposes the actions produced by the deliberative
layer into commands accepted by the functional level. Newer
developments interleave the two upper layers (deliberative
and executive) into a decisional layer, in which planning and
execution are highly coupled.

So, if we are interested in evaluating the performance of
a control architecture, we need to take into account all the
components, not only the deliberative components. The con-
figuration of the architecture, that is, the hierarchy built on top
of a set of different components and how they are connected,
plays a fundamental role: some planning technologies generate
a complete plan before execute it, while others generate partial
plans, interleaving planning and execution in a loop. This
implies questions such as the different delays interchanging
data between layers that affects the performance of the system.
To cover that issue we take the functional support for the
robotic platform to control as an invariant part of the system,
while employ different technologies for planning and execution
over the same domain.

Fig. 3. The OGATE environment

To deal with these questions, OGATE aims at providing an
environment to test features of goal oriented controllers and to



obtain quantitative comparison based on accurate experiments
and also qualitative analysis allowed by inspection and visual-
ization of software internal monitors of the controlled system.
The infrastructure of the system relies on three main modules
as seen in fig. 3 to support a general test bed environment for
autonomous agents:

– Mission specification: to define the functionality and
goals, first it is required to specify the configuration of
the mission: the components of the control architecture
and the platform over which they operate. In this way,
the system provides a convenient mode to allow the
user to configure some components of the controlled
system, such as the deliberators. Typically, these AI
controllers work with a domain and a problem. First
one defines the interactions between different elements
of the world, and the last one includes some initial
facts and the desired objectives of the mission. The
specification of a mission testbench could consist of an
evaluation of different control architectures or various
configurations for a control architecture to select the
best one for a particular mission, or the evaluation of
the performance for a particular control architecture
over a set of missions, to evaluate and improve the
components employed. The OGATE system will be
able to support these tests in an automated way.

– Mission execution: the mission specification includes
the configuration of the different components (execu-
tives, deliberatives, etc.) involved in the mission. The
execution support of OGATE provides a framework
to deal with the complexity of the underlying archi-
tecture of the different components, to execute the
user defined mission and to gather the relevant data in
order to give it to the user. Also, during the execution,
the user must be able to interact with the controlled
system, modifying internal parameters or including
new mission goals to change the nominal execution,
in order to test the robustness of the system and the
replanning capabilities of the planning and execution
components, or to include new science opportunities
for real missions to maximize the science return. So,
using specific defined interfaces, OGATE is able to
access to the different components to control and
gather the relevant data.

– Report: from the previous data, a research effort to
identify and to develop useful metrics for comparing
the performance of different deliberative layers will be
addressed, in order to obtain strong conclusions when
comparing different deliberative components under
the same conditions. OGATE will provide a human-
legible report of the mission when the required tests
have been performed.

V. A FIRST CONTACT WITH THE ENVIRONMENT

For the first deployment of the OGATE environment we
employ the GOAC architecture. The mission specification relies
on the OGATE infrastructure to provide the configuration
of the mission by the user, that is, select a domain and a
problem, and the deliberative components that will be attached
to the GOAC architecture. Also, it will be possible to define

different platforms to control, with their respective functional
layers. The configuration of the different reactors for the
architecture (i.e. command dispatcher or functional layer) will
be easily set by the user using a provided graphical interface,
encapsulating the complexity of dealing with the underlying
GOAC architecture.

The mission specification generates a configuration file, to
be used by the mission execution. The mission specification
module manages this configuration allowing reading and gen-
erating new configurations. To do this, a XML configuration
file is employed. A typical configuration can be see as a tree in
which every component provides a functionality while requires
(or not) the functionality of other components. Figure 4 shows
a valid configuration for the GOAC controller, while fig. 5
presents the hierarchical decomposition of the functionality of
each component.

Fig. 4. GOAC mission specification

Fig. 5. GOAC functionality hierarchy

The mission execution takes the configuration defined by
the user and it attaches the different components to the OGATE
system to execute them in a coordinated way. Some of these
components are basic components over which OGATE has no
control, it only executes them because they are required (for
example, a simulation platform will be executed before execute
the functional layer that controls the platform), while other
components will be controlled directly by OGATE, such as
the deliberative component. These components will be defined
as OGATE plug-in components (more details in next section).
For deliberative plug-in components a GUI allows the user to
include new goals or to modify the internal state during the
test, showing the relevant data in real-time.

From the data gathered by the plug-in components and
other relevant data generated by the system, OGATE will pro-
vide a report to measure the performance for these components
and for the whole configuration.

At this moment we are focused on the deliberative capa-
bilities, and for the initial test we are interested in two points:



– Starting from the timelines approach and with the
APSI-TRF support, deploy an automated problem gen-
erator and to perform some initial tests to evaluate the
planner, increasing the problem hardness. This genera-
tor must be based on critical factors that affect directly
to the goal oriented controllers, and the problems must
be defined using a set of parameters which denote the
problem hardness with valid and objective criteria.

– When the system is mature, we plan to interchange the
configuration and technology employed for the delib-
erative and executive process, using different instances
of GOAC for interleaving planning and execution, and
other solutions based in different paradigms, such as
the plan-then-act schema, like MOBAR architecture
does [23].

A. OGATE plug-ins

To achieve the goals of OGATE, some parts of the control
architecture under study shall be accessible to the system. To
cope with this, OGATE defines a small set of easy interfaces
which allow controlling different aspect of a component. A
OGATE plug-in is a component of a controller system that
implements some functionality accessible through these inter-
faces, giving some access to OGATE to control its execution,
or to retrieve data from it. The interfaces that OGATE defines
are:

– Control interface: provides the basic functionality
to run, pause or stop the component safely. Also,
this gives a channel to monitor the health of the
component, allowing detecting non-nominal states of
a controlled component.

– Data interface: supplies a bidirectional channel to
retrieve the relevant data and to modify the internal
state of the component. For deliberative components
it also provides a function to include new goals during
the execution. This implies that the Data interface acts
as a telemetry/telecommand system.

– GUI Interface: it is possible to include a specific user
interface for that component in the OGATE GUI.

In order to implement the Control and Data interfaces it is
possible to select between two interfacing methods:

– Direct method invocation: a set of Java interfaces is
specifically designed to work with OGATE. This gives
an easy to implement synchronous communication
between OGATE and plug-ins that can be deployed for
components implemented in Java and C/C++ (using
the Java Native Interface).

– OGATE server: a plug-in can be connected through
the OGATE server using a simple protocol supported
via TCP/IP. This allows deploying OGATE plug-ins in
different computers using an asynchronous schema.

Both methods provides the same functionality and can be
mixed, however, using the OGATE server it is also possible
to support telemetry in real time, which is also useful to
retrieve temporal metrics (see next section). Finally, the GUI
interface is only accessible using the direct method invocation.

Fig. 6. A deliberative component plug-in

OGATE can integrate a Java GUI inside its environment
with a minimum modification of the previous code; graphical
components developed in other technologies must be executed
outside the environment at this moment.

B. Metrics

From the different plug-ins attached to the OGATE system,
the information gathered through the data interface will be
passed to the Metrics module, which takes the relevant data
and generates a report based on specialized metrics. This is
the final result of the execution of the OGATE system.

For every mission a set of metrics can be defined. A metric
represent a relevant value that we want to retrieve from the
execution. The metrics set can be different for each control
system and for every component. For example, a common
metric can be the time employed by the component during its
execution, which can be a metric valid for every component,
while a specific metric can be the time spend in searching a
solution for a deliberative component.

OGATE allows two types of metrics:

– Basic: this metrics are collected at the end of execu-
tion, thus, we are only interested in the final value. An
example of such metric could be the number of goals
achieved by the controller.

– Temporal: a temporal metric allows us to keep track
of the value for that metric during the whole mission,
allowing to see how the value evolves over time.
An example of a temporal metric can be the time
employed dispatching goals to other components.

At the end of the execution, OGATE will present not
only the basic metrics, it also extract relevant values from the
temporal metrics. Figure 7 shows an example of a temporal
metric named deliberationTime that represent the time in
miliseconds spend by the component deliberating. During the
execution, OGATE presents the chart of the top of the image,
while at the end, it present a summary of all metrics defined
for the mission. In the bottom of the figure are presented a
basic metric, missionTime, the time to complete the mission,
and, also, the set of values obtained from the temporal metric.



Fig. 7. Metrics on OGATE

Currently only extract the maximum and minimum values and
the arithmetic mean of the set.

C. Current deploy of OGATE

The deployment of an automated control architecture is
usually a complex task, that requires some knowledge about
the different components: how are they interconnected, which
one must be executed first to be coupled with the others, etc..
So, if we are interested in disseminating our work, we must
spend some time in preparing manuals and help new users.

For these new users, when they are able to start the system,
a huge amount of data is (generally) generated and presented
via the command line or via specialized graphical interface.
But depending on the users preferences, they may want to pay
attention to some particular data.

The current state of the OGATE system integrates Knowl-
edge Engineering capabilities, using the different components
which form the GOAC architecture, what allows us to:

– Create new problems of the space robotic case study
domain (mentioned in previous section) using an au-
tomatic generator that defines the hardness in function
of the number of science tasks and the time in which
the Remote Orbiter is visible.

– Create scenarios through a GUI to specify the planning
and execution configuration used to solve the prob-
lem(s) defined. Currently, the T-REX configuration
is fixed to one deliberative reactor, the command
dispatcher reactor (connected to the functional support
of the robot) and a visualization tool provided by
the T-REX framework (it visualizes the current state
of the different timelines contained in the domain).
So, the user only can change the planning service
employed by the deliberative reactor and the domain
and problem to resolve.

– Define components that will be run without the
OGATE control such as the functional support of

the robotic platform or the simulator. Actually in our
implementation, the DALA robot simulator is only
available.

– Integrate different plug-ins; OGATE not only accepts
deliberative plug-ins, other components could be at-
tached to the system, such as the visualization tool of
T-REX.

– Attach the different components to generate an in-
stance of the system, which will be executed by
OGATE without any intervention of the user.

– Focus on what we are really interesting since inside
OGATE is possible to define which components gener-
ate relevant data, and then, show only that information
inside a unique GUI.

– Display temporal metrics during the mission execution
and metrics summary at end.

The cycle for the execution of a control system within
OGATE could be seen in fig. 8. Starting from the different
components available (the T-REX engine, a timeline-based
planner, domain and problem, and a robotic platform), the
user can exploit the mission specification module of OGATE to
generate a configuration file that defines what are the problems
to address, and with which instance of T-REX the problem
will be solved within the mission specification GUI (shown
at the top left window). After that, the mission execution
module takes the user choice and creates an instance of T-
REX with the selected planner and the functional support, and
it attaches them correctly. In fig. 8 is possible to see (bottom
right) OGATE running the current available instance of T-
REX with the OMPS planner as the deliberative component.
The functional support is the DALA simulator that requires
specific components to be executed without being controlled
by the OGATE system. One of them is the mp-oprs, a
message passer service for communication with the robotic
platform exploited by OGATE, for which output is presented
inside the OGATE GUI. Also, OGATE maintains a registry or
log for the different components, which could be valuable for
debugging the controlled system. Finally, OGATE must present
the relevant data gathered to the user.

In that deployment, the T-REX is modified to support
interfacing with OGATE using the OGATE server, and thus,
it is possible to retrieve metrics (both temporal and basic) and
control the different reactors, which implies the possibility of
modify the states of the timelines (to produce failures) or inject
goals (for opportunistic science for example). Also, there is
another OGATE plug-in to include the T-REX’ visualization
tool inside the OGATE GUI.

At this very moment OGATE is a system that allows us
to interact with T-REX and to obtain some parameters such
as the time spend in different tasks for every reactor and
other metrics. Starting from this, we want to better understand
the interaction between deliberation and execution in order to
establish some general metrics that can be useful to analyze
and compare different autonomous controllers.

Although OGATE provides some advantages, we are cur-
rently working on expanding its capabilities for making exe-
cution more "user-comprehensible". At this moment OGATE



Fig. 8. A first deploy of the OGATE system

shows the information of the components, but not the interac-
tion between them. This is an important issue that has to be
addressed to better understand what and how the system works.
Also, through the GUI, our intention is to provide a framework
that allows the user to support different planning and execution
systems via a plug-in style, trying to ease the deployment
of complex systems. The support is not only applicable to
the deliberative layer, but also to the functional support, in
order to exploit different robotics platforms or simulators
suites. Finally, our intention is to investigate the metrics to
define the performance for planning and execution systems,
implementing objective and comprehensive comparison reports
for autonomous controllers inside the OGATE system.

VI. CONCLUSIONS

Control architectures for autonomous robots are complex
software systems, not only from a design and implementation
perspective but also from a research point of view since we
want to analyze and (possibly) improve their performance.
This is in part a consequence of the lack of a methodology
to perform test on previous works on autonomous controllers.
Also, currently there is no a definition of what are the relevant
parameters (metrics) to measure of this kind of systems. So,
a testbench that allows the user to define metrics and obtain
results from the execution of different tests (by inspection of

the relevant parameters) is required as an initial effort to better
understand these complex systems and fairly analyze them
from a scientific perspective.

Also, it is usually very complex to deploy and execute
an autonomous control architecture (which is usually ad-hoc
made for a particular robot and purpose), which generally is
formed by different interconnected components. Besides, once
the systems is executing, the operator gets a huge amount of
non human-legible information, confusing the user and keeping
him/her away from the relevant data.

For this reason we are working on the OGATE system,
which aims to address part of this gap, providing a general
testbench to allow easy deployment of an autonomous archi-
tecture: giving the OGATE plug-ins and configurations files, it
will be easy to deploy any system. It will be only required to
load the specific files and run it. Then, specialized graphical
interfaces will be enabled to show the relevant data to the user,
encapsulating the complexity of the underlying functionality.
Finally, OGATE will also offer an automated testbench to
obtain quantitative comparison based on accurate experiments,
which leads to human-legible reports with well defined metrics.



ACKNOWLEDGEMENTS

Pablo Muñoz is supported by the European Space Agency
(ESA) under the Networking and Partnering Initiative. CNR
authors are partially supported by the Italian Ministry for
University and Research (MIUR) and CNR under the GECKO
Project (Progetto Bandiera “La Fabbrica del Futuro”). Authors
want to thank to the ESA’s technical officer Mr. Michel Van
Winnendael for his continuous support.

REFERENCES

[1] R. E. Korf, “Planning as Search: A Quantitative Approach,” Artificial
Intelligence, vol. 33, pp. 65–88, 1987.

[2] R. E. Fikes and N. J. Nilsson, “STRIPS: A New Approach to the Appli-
cation of Theorem-Proving to Problem-Solving,” Artificial Intelligence,
vol. 2, no. 3, pp. 189–208, 1971.

[3] R. Dechter and J. Pearl, “Network-based Heuristics for Constraint-
Satisfaction Problems,” Artificial Intelligence, vol. 34, no. 1, pp. 1–38,
1987.

[4] M. B. Do and S. Khambhampati, “Solving Planning-Graph by Compil-
ing It Into CSP,” in ICAPS-00. The Fifth International Conference on
Artifcial Intelligence Planning and Scheduling, 2000, pp. 82–91.

[5] A. Cesta, S. Fratini, and A. Oddi, “Planning with Concurrency, Time
and Resources: A CSP-Based Approach,” in Intelligent Techniques for
Planning, I. Vlahavas and D. Vrakas, Eds. Idea Group Pubhishing,
2005, pp. 259–295.

[6] N. Muscettola, “HSTS: Integrating Planning and Scheduling,” in Intelli-
gent Scheduling, Zweben, M. and Fox, M.S., Ed. Morgan Kauffmann,
1994.

[7] A. K. Jonsson, P. H. Morris, N. Muscettola, K. Rajan, and B. D. Smith,
“Planning in interplanetary space: Theory and practice,” in the 5th
International Conference on Artificial Intelligence Planning Systems,
Breckenridge, Colorado, USA, April 2000.

[8] D. Smith, J. Frank, and A. Jonsson, “Bridging the gap between planning
and scheduling,” Knowledge Engieneering Review, vol. 15, no. 1, pp.
47–83, 2000.

[9] J. Frank and A. Jonsson, “Constraint-based attribute and interval plan-
ning,” Journal of Constraints, vol. 8, no. 4, pp. 339–364, 2003.

[10] S. Fratini, F. Pecora, and A. Cesta, “Unifying Planning and Scheduling
as Timelines in a Component-Based Perspective,” Archives of Control
Sciences, vol. 18, no. 2, pp. 231–271, 2008.

[11] A. Cesta, G. Cortellessa, S. Fratini, and A. Oddi, “Developing an end-
to-end planning application from a timeline representation framework,”
in IAAI-09. Proc. of the The Twenty-First Innovative Applications of
Artificial Intelligence Conference, Pasadena, CA, USA, July 2009.

[12] S. Chien, D. Tran, G. Rabideau, S. Schaffer, D. Mandl, and S. Frye,
“Timeline-based space operations scheduling with external constraints,”
in ICAPS-10. Proc. of the Twentieth International Conference on
Automated Planning and Scheduling, Toronto, Ontario, Canada, May
2010.

[13] J. Ambros-Ingerson and S. Steel, “Integrating Planning, Execution and
Monitoring,” in AAAI. AAAI Press, 1998, pp. 83–88.

[14] A. Finzi, F. Ingrand, and N. Muscettola, “Model-based executive control
through reactive planning for autonomous rovers,” in In Proc. of 2004
IEEE/RSJ International Conference on Intelligent Robots and Systems,
Sendai, Japan, September 2004.

[15] F. Py, K. Rajan, and C. McGann, “A Systematic Agent Framework for
Situated Autonomous Systems,” in AAMAS-10. Proc. of the 9th Int.
Conf. on Autonomous Agents and Multiagent Systems, 2010.

[16] A. Ceballos, S. Bensalem, A. Cesta, L. D. Silva, S. Fratini, F. Ingrand,
J. Ocón, A. Orlandini, F. Py, K. Rajan, R. Rasconi, and M. V. Winnen-
dael, “A Goal-Oriented Autonomous Controller for Space Exploration,”
in ASTRA 2011 - 11th Symposium on Advanced Space Technologies in
Robotics and Automation, Noordwijk, the Netherlands, April 2011.

[17] S. Bensalem, L. de Silva, M. Gallien, F. Ingrand, and R. Yan, ““Rock
Solid” Software: A Verifiable and Correct-by-Construction Controller
for Rover and Spacecraft Functional Levels,” in i-SAIRAS-10. Proc. of
the 10th Int. Symp. on Artificial Intelligence, Robotics and Automation
in Space, 2010.

[18] J. Bresina, A. Jonsson, P. Morris, and K. Rajan, “Activity planning for
the Mars Exploration Rovers,” in in Proc. of the 15th International Con-
ference on Automated Planning and Scheduling, Monterey, California,
USA, June 2005.

[19] P. Poulakis, L. Joudrier, S. Wailliez, and K. Kapellos, “3DROV:
A planetary rover system design, simulation and verification tool,”
in International Symposium on Artificial Intelligence, Robotics and
Automation in Space (i-SAIRAS), Hollywood, USA, February 2008.

[20] A. Mallet, C. Pasteur, M. Herrb, S. Lemaignan, and F. Ingrand,
“GenoM3: Building middleware-independent robotic components,” in
2010 IEEE Proc. of the International Conference on Robotics and
Automation, Anchorage, Alaska, USA, May 2010.

[21] A. Gerevini and D. Long, “Plan constraints and preferences in PDDL3,”
in Proc. of the Fifth International Planning Competition, Italy, 2005.

[22] E. Gat, “Three-layer architectures,” in Mobile Robots and Artificial
Intelligence, D. Kortenkamp, R. Bonasso, and R. Murphy, Eds. AAAI
Press, 1998, pp. 195–210.

[23] P. Muñoz and M. D. R-Moreno, “Model-Based Architecture on the
ESA 3DROV simulator,” in In Proc. of the 23rd ICAPS Application
Showcase, Rome, Italy, June 2013.


