
Using a Plan Graph with Interaction Estimates
for Probabilistic Planning

Yolanda E-Martı́n and Marı́a D. R-Moreno and David E. Smith

Abstract Many planning and scheduling applications require the ability to deal with
uncertainty. Often this uncertainty can be characterized in terms of probability distri-
butions on the initial conditions and on the outcomes of actions. These distributions
can be used to guide a planner towards the most likely plan for achieving the goals.
This work is focused on developing domain-independent heuristics for probabilistic
planning based on this information. The approach is to first search for a low cost de-
terministic plan using a classical planner. A novel plan graph cost heuristic is used
to guide the search towards high probability plans. The resulting plans can be used
in a system that handles unexpected outcomes by runtime replanning. The plans can
also be incrementally augmented with contingency branches for the most critical
action outcomes.

1 Introduction

The success of plan graph heuristics in classical planners like FF [11] or HSP [3],
has influenced research on heuristic estimators to deal with probabilistic planning
problems. These kind of problems, represented in PPDDL [7], are characterized
by full observability and non-deterministic effects of actions that are expressed by
probability distribution.

A few probabilistic planners such as FF-Replan [15] or RFF [6] determinize
the given probabilistic problem into a classical planning problem, and use heuris-

Yolanda E-Martı́n
Departamento de Automática, Universidad de Alcalá, e-mail: yolanda@aut.uah.es

Marı́a D. R-Moreno
Departamento de Automática, Universidad de Alcalá, e-mail: mdolores@aut.uah.es

David E. Smith
Intelligent Systems Division, NASA Ames Research Center, e-mail: david.smith@nasa.gov

Yolanda E-Martı́n and Marı́a D. R-Moreno and David E. Smith

tic functions based on relaxed plans to guide a classical planner in the search for a
deterministic plan. However, other probabilistic planners use plan graphs to com-
pute estimates of probability that propositions can be achieved and actions can be
performed [1, 8]. This information can be used to guide the probabilistic planner
towards the most likely plan for achieving the goals.

The main motivation for this work is to find high probability deterministic seed
plans. These plans can be used in a system that handles unexpected outcomes by
runtime replanning. The plans can also be incrementally augmented with contin-
gency branches for critical action outcomes. To find high probability seed plans, we
use a relaxed-plan heuristic to guide a forward state space planner. Construction of
relaxed plans is guided by probability estimates propagated through a plan graph.
These probability estimates are more accurate than typical, as they make use of the
notion of interaction introduced by Bryce & Smith in [5].

This approach has been implemented in the Parallel Integrated Planning and
Scheduling System (PIPSS) [18]. PIPSS is the union of a heuristic search plan-
ner and a scheduling system. This paper starts by describing the translation tech-
nique from probabilistic planning domains into a deterministic domains. Then, we
describe our plan graph cost estimator and the relaxed plan extraction procedure
that guides the search. We follow with an empirical study of the techniques within
PIPSS and compare with some other probabilistic planners. Finally, future work is
discussed.

2 Conversion from PPDDL to PDDL

To convert from PPDDL to PDDL we follow the approach of Jimenez, Coles &
Smith [14]. In general, the process consists of generating a deterministic action for
each probabilistic effect of a probabilistic action. For each new action created, the
probability of its outcomes is transformed in to a cost equal to the negative loga-
rithm of the probability. This cost will be used to compute the probability of each
proposition and action.

More precisely, if A is a probabilistic action with outcomes O1,...,Oi with proba-
bilities P1,...,Pi respectively, we create a new deterministic action for each outcome.
Each deterministic action Ai has all the preconditions of A. If the outcome Oi is con-
ditional Ai will also have additional preconditions corresponding to the conditions
of Oi. The effects of Ai are the effects in the outcome Oi, and Ai is given the cost
Ci = −Ln(Pi). Figure 1 shows an example of the conversion strategy . Figure 1(a)
shows a probabilistic action that has two effects leading to the two deterministic
actions shown in Figures 1(b) and 1(c).

Using a Plan Graph with Interaction Estimates for Probabilistic Planning

(:action pick-up

:parameters (?b1 ?b2 - block)

:precondition (and (not(= ?b1 ?b2)) (emptyhand) (clear ?b1) (on ?b1 ?b2))

:effect (probabilistic

3/4 (and (holding ?b1) (clear ?b2) (not(emptyhand)) (not(clear ?b1))

(not(on ?b1 ?b2)))

1/4 (and (clear ?b2) (on-table ?b1) (not(on ?b1 ?b2)))))

(a) Probabilistic action in PPDDL

(:action pick-up-ALIAS-0

:parameters (?b1 ?b2 - block)

:precondition (and (not(= ?b1 ?b2)) (emptyhand) (clear ?b1) (on ?b1 ?b2))

:effect (and (holding ?b1) (clear ?b2) (not(emptyhand))

(not(clear ?b1)) (not(on ?b1 ?b2)) (increase (cost) 0.28)))

(b) Deterministic action I

(:action pick-up-ALIAS-1

:parameters (?b1 ?b2 - block)

:precondition (and (not(= ?b1 ?b2)) (emptyhand) (clear ?b1) (on ?b1 ?b2))

:effect (and (clear ?b2) (on-table ?b1) (not(on ?b1 ?b2))

(increase (cost) 1.38)))

(c) Deterministic action II

Fig. 1 Example of determinization of a probabilistic action.

3 Plan Graph Cost Heuristic

In this section we describe the plan graph heuristic, which guides the planner to-
wards the lowest cost (highest probability) plan.

Given the deterministic actions created by the technique described in the previous
section, we build a plan graph and propagate cost (probability) information through
it. We start from the initial conditions and work progressively forward through each
successive layer of the plan graph. The cost of performing an action will be the
cost that its preconditions can be achieved. The cost of achieving a proposition in
the next level of the plan graph will be the minimum cost among all the actions of
the previous layer that generate the proposition. Typically, the cost of achieving a
set of preconditions for an action is taken to be the sum of the costs of achieving
the propositions. However, this can be an underestimate if some of the preconditions
interfere with each other, and can be an overestimate if some of the preconditions are
achieved by the same action. For this reason, we introduce the notion of interaction
(L), which captures the degree of dependence (positive or negative) between pairs
of propositions and actions in the plan graph [5].

Yolanda E-Martı́n and Marı́a D. R-Moreno and David E. Smith

3.1 Interaction

Interaction, is a value that determines how more or less costly (probable) it is that
two propositions or actions are established together instead of independently. This
concept is a generalization of the mutual exclusion concept used in classical plan
graphs. Formally, the interaction, L, between two propositions or two actions (p and
q) is defined as:

L(p,q) =Cost(p∧q)− (Cost(p)+Cost(q)) (1)

It has the following features:

L(p,q) is

< 0 if p and q are synergistic
= 0 if p and q are independent
> 0 if p and q interfere

That is, L provides information about the degree of interference or synergy bet-
ween pairs of propositions and pairs of actions in a plan graph. When L(p,q) < 0
(synergy) this means that the cost of establishing both p and q is less than the sum
of the cost for establishing the two independently. However, this cost cannot be less
than the cost of establishing the most difficult of p and q. As a result L(p,q) is
bounded below by −min[cost(p),cost(q)]. Similarly, 0 < L(p,q) < ∞ means that
there is some interference between the best plans for achieving p and q so it is
harder (more costly) to achieve them both than to achieve them independently. In
the extreme case, L = ∞, the propositions or actions are mutually exclusive.

Interaction is important because it provides information about the relation (in-
dependence, interference or synergy) between a pair of propositions or a pair of
actions at each level of the plan graph. For this reason, instead of computing mutex
information in the plan graph, we compute interaction information between all pair
of propositions and all pair of actions at each level. Hence, this terms is taken into
account in the cost propagation. In this way, we can establish a better estimation of
the cost that two propositions or two action perform at the same time.

3.2 Plan Graph Estimator

This subsection describes the method to create the cost plan graph. The process
consists of building a plan graph using a modified GraphPlan [2] algorithm in which
the mutex calculation is replaced with interaction calculation.

The cost and interaction computation begins at level zero of the plan graph and
sequentially proceeds to higher levels. For level zero we assume 1) the cost of each
proposition at this level is −Ln(Pr), where Pr is the probability of the proposition
in the current state and 2) the interaction between pair of propositions is 0, that is,
the propositions are independent. Neither of these assumptions are essential, but we

Using a Plan Graph with Interaction Estimates for Probabilistic Planning

adopt them here for simplicity. With these assumptions, we start the propagation by
computing the cost of the actions at level zero.

In the following subsections, we give the details of how to do this beginning at
the initial proposition layer and working forward to actions, and finally to the next
proposition layer.

Computing Action Cost and Interaction

Lets suppose that we have the cost and interaction information for propositions at a
given level of the plan graph. We use this information to compute the cost and the
interaction information for the subsequent action layer. Considering an action a at
level l with a set of preconditions preca, the cost that an action is executed is the
cost that all the preconditions are achieved plus the interaction between all pairs of
preconditions:

Cost(a) = ∑
(xi,x j)∈preca

j>i

[
Cost(xi)+L(xi,x j)

]
(2)

As an example, consider one level of the plan graph shown in Figure 2, where
we have three propositions q, r and s with costs .22, .43 and .69 respectively, and
interaction values L(q,r) = −.2, L(q,s) = .3 and L(r,s) = .6 at level i. There are
also two actions P and W which have outcomes with costs .26 and .3 respectively
(these costs are the negative logarithm of the probabilities for those outcomes). The
numbers above the propositions and actions are the costs associated with each one
(those with * are the costs that will be computed in subsequent sections).

Fig. 2 A Plan Graph with Costs and Interaction Calculation and Propagation

Yolanda E-Martı́n and Marı́a D. R-Moreno and David E. Smith

For the example shown in Figure 2, the cost for actions P and W would be:

Cost(P) =Cost(q)+Cost(r)+L(q,r) = .22+ .43− .2 = .45

Cost(W) =Cost(r)+Cost(s)+L(r,s) = .43+ .69+ .6 = 1.72

The next step is to compute the interaction between actions. If the actions are
mutex by inconsistent effect, or effects clobbering preconditions, then the cost is
∞. Otherwise, the cost of performing two actions a and b will be the sum of their
individual costs plus the cost of the interaction between their preconditions. We can
define the interaction between two actions a and b at level l, with sets of precondi-
tions preca and precb as:

L(a,b) =
{

∞ if a and b are mutex by inconsistent effects or effects clobbering preconditions
Cost(a∧b)−Cost(a)−Cost(b) otherwise

(3)

Where in the second case the interaction can be simplified as follows:

L(a,b) = Cost(a∧b)−Cost(a)−Cost(b)

=

[
Cost(a)+Cost(b)+ ∑

xi∈preca−precb
x j∈precb−preca

L(xi,x j)

]
−Cost(a)−Cost(b)

= ∑
xi∈preca−precb
x j∈precb−preca

L(xi,y j)− ∑
(xi,x j)∈preca∩precb

j>i

[
Cost(xi)−L(xi,x j)

]

For the example in Figure 2, the interaction between actions P and W would be:

L(P,W) = L(q,s)−Cost(r) = .3− .43 =−.13

The fact that L(P,W) =−.13 means that there is some degree of synergy between
the actions P and W. This synergy comes from the fact that the two actions have a
common precondition, r. However, this synergy is tempered due to the interference
between the precondition q of P and the precondition s of W.

Computing Proposition Cost and Interaction

The next step consists of calculating the cost of the propositions at the next level.
In this calculation we need to consider all the possible actions at the previous level
that achieve each proposition. We make the usual optimistic assumption that we can
use the least expensive action, so the cost is the minimum over the costs of all the
actions that can achieve the proposition. More formally, for a proposition x at level
l, achieved by the actions Ach(x) at the preceding level, the cost is calculated as:

Using a Plan Graph with Interaction Estimates for Probabilistic Planning

Cost(x) = min
a∈Ach(x)

[Cost(a)+Cost(x|a)] (4)

Where Cost(x|a) is the cost of the outcome x for the action a.

In our example, the cost of the proposition u of the graph is:

Cost(u) = min[Cost(P)+Cost(u|P),Cost(W)+Cost(u|W)]

= min[.45+ .26,1.72+ .3]

= min[.71,2.02] = .71

Finally, we consider the interaction between a pair of propositions x and y. In
order to compute the interaction between two propositions at a level l, we need to
consider all possible ways of achieving those propositions at the previous level. That
is, all the actions that achieve the pair of propositions and the interaction between
them. Suppose that Ach(x) and Ach(y) are the sets of actions that achieve the propo-
sitions x and y at level l. The interaction between x and y is then:

L(x,y) = min
a∈Ach(x)
b∈Ach(y)

[Cost(a)+Cost(b)+L(a,b)+Cost(x|a)+Cost(y|b)]−Cost(x)−Cost(y) (5)

Returning to our example, consider the calculation of the interaction between t
and u where the possible ways to achieve both are performing P or P and W. In this
case, the interaction is calculated as follows:

I(t,u) = min[Cost(P)+Cost(u|P),Cost(P)+Cost(W)+L(P,W)+Cost(t|P)+Cost(u|W)]

−Cost(t)−Cost(u)

= min[.45+ .26, .45+1.72− .13+ .26+ .3]− .71− .71

= .71− .71− .71 =−.71

In this case, it is less costly to establish the propositions t and u through action P
than P and W. This makes sense because executing a single action always has lower
cost than performing two.

Taking the above calculations into consideration, we build a cost plan graph in
the same way that an ordinary plan graph is created, replacing the mutex calculation
with interaction calculation. The cost estimates for each action and proposition that
appears in the graph, and the interaction value of every pair of propositions and
every pair of operators are then used to compute the heuristic estimation that guides
the planner towards low cost plans.

Yolanda E-Martı́n and Marı́a D. R-Moreno and David E. Smith

3.3 Heuristic Computation

As mentioned above, the plan graph and cost estimates are used to help guide a for-
ward state-space planning search. Thus, initially the system builds a cost plan graph.
For each state, the plan graph is updated and a relaxed plan is created to estimate
the cost of achieving the goals from that state. The relaxed plan regression algo-
rithm makes use of the cost and interaction information to make better choices for
actions. In particular, the algorithm orders the goals at each level according to cost,
and chooses the operator used to achieve each goal based on cost. More precisely:

• Arrange goals: the goals at each level are arranged from the highest cost to the
lowest. That is, we begin analyzing the most expensive (least probable) proposi-
tion.

• Choose operators: if there is more than one operator that achieves a particular
goal at a level, we choose the operator with the lowest cost (highest probability)
given the other operators that have already been chosen at that level. Suppose
that O is the set of operators selected in level l, and Ach(g) is the set of actions
that achieve the current goal g at level l. The operator we choose is:

argmin
a∈Ach(g)

[
Cost(a)+Cost(g|a)+ ∑

b∈O
L(a,b)

]
(6)

Figure 3 shows the algorithm used in the relaxed plan regression phase.

Function COSTESTIMATE (G,l)

Gl the set of goals at level l in the relaxed plan graph
g a goal proposition
l number of levels in the relaxed plan graph
Al the set of actions at level l for an specific goal
a an action
Ol the set of operators selected at level l
π the set of actions selected
CCE the completion cost estimate of the current node

1. while l 6= 0
2. while Gl 6= /0
3. g = argmax

g∈Gl

(Cost(g))

4. Al = {a : g ∈ e f f ect+(a)}
5. a = argmin

a∈Al

[
Cost(a)+Cost(g|a)+∑b∈Ol

L(a,b)
]

6. Ol ← Add(a)
7. π ← Add(a)
8. Gl−1 = Gl−1∪ preconditions(a)
9. Gl = Gl −{g}
10. l = l−1
11. CCE(currentNode) = ∑i=1..n Cost(πi)
12. return CCE

Fig. 3 The relaxed plan regression pseudo-algorithm.

Using a Plan Graph with Interaction Estimates for Probabilistic Planning

To illustrate, consider the relaxed plan graph shown in Figure 4, where every
operator and action has associated a cost value. Suppose that the set of goals is
composed of the propositions r and p with cost .53 and .67 respectively, we start
analyzing goal p and later r. In this way, we first deal with the highest cost goal. The
proposition p is achieved by actions C and D and, we choose C because it has the
lowest cost. Goal r is achieved by operator B and noop-r. In order to know which is
the best choice, the cost of achieving r must be computed for both of these operators
assuming operator C. Considering the action cost values shown in Figure 4, and the
interactions and additive costs: L(B,C) = 0, L(noop-r,C) = 0, Cost(r|noop-r) = 0
and Cost(r|B) = 0.25, the chosen operator would be:

argmin
a∈Ach(g)

[Cost(noop-r)+L(noop-r,C)+Cost(r|noop-r),Cost(B)+L(B,C)+Cost(r|B)]

argmin
a∈Ach(g)

[0+0+0,0+0+0.25] = 0

Fig. 4 A Relaxed Plan Graph

In this case the selected operator is noop-r because it would have the lowest cost.
The same technique is applied for the rest of the layers until the initial state

is reached. Once the plan is extracted, we compute the heuristic estimation. That
would be the sum of the cost of every action selected in the search plan process. In
this way, we are considering the interaction information.

Supposing that the plan solution selected is composed of operators B and C, the
heuristic would be 0 + .2 = .2. In this way, the planner would guide the search
process towards the low cost path thus achieving the low cost plan.

Yolanda E-Martı́n and Marı́a D. R-Moreno and David E. Smith

4 Experimental Results

In this section, we describe the experiments that demonstrate that the plan graph cost
heuristic guides the search to high probability solutions for probabilistic planning
problems. We have conducted an experimental evaluation on IPPC-06 [4] and IPPC-
08 [12] fully-observable-probabilistic planning track (FOP) as well as the “proba-
bilistically interesting” domains introduced by Little and Thiebaux [9]. For all the
planners 30 trials per problem were performed with a total time limit of 30 minutes
for the 30 trials. The test consists of running the planner and using the resulting
plan in the MDP Simulator [7]. Unexpected outcomes are handled by runtime re-
planning. The planner and simulator communicate by exchanging messages: the
simulator sends a message to the planner with the current state; the executive sends
a message with the next action of the plan. When the planner receives an unexpected
state it treats this by replanning.

Four planners have been used for the experimental evaluation:

• FFH [16]: an FF-Replan planner that converts the probabilistic domain defini-
tions into a deterministic domain using all-outcomes determinization. It then uses
FF to compute a solution plan. To handle unexpected states it generates contin-
gency branches on the outcomes that are expected to be in the plan. The original
FF-Replan [15] won the 2004 International Probabilistic Planning Competition.

• FFH+ [17]: an improved FFH with helpful methods that allow the planner to
reduce its computational cost. These methods detect potentially useful actions
and reuse relevant plans.

• FPG [13]: considers the planning problem as an optimization problem, and solves
it using stochastic gradient ascent through the OLpomdp Algorithm [10]. This
planner won the 2006 International Planning Competition.

• RFF [6]: determinizes the PPDDL problem into a classical planning problem
and then produces solution plans that are treated using sequential Monte-Carlo
simulations to assess the probability of replanning during execution. This planner
won the 2008 International Planning Competition.

This section is divided into three subsections, each one corresponding to the set
of domains used for experimental purposes. For each subsection, we show a table
that represents the number of successful rounds. The results have been compared
with those shown in [17]. We cannot compare computational time because some of
the planners are not available.

4.1 The 2006 IPPC Domains

The Second International Probabilistic Planning Competition consisted of two
tracks, one for conformant planning characterized by non-observability and non-
deterministic effects (NOND track), and the other for probabilistic planning with

Using a Plan Graph with Interaction Estimates for Probabilistic Planning

fully observable domains and probabilistic action outcomes (FOP track). We are
concerned with the FOP track, which contains the following domains:

• Blocks World: this domain is similar to the classical BlocksWorld with additional
actions. A gripper can hold a block or a tower of them or be empty. When trying
to perform an action, there is a chance of dropping a block on the table.

• Exploding Blocks World: this is a dead-end version of the BlocksWorld domain
described earlier where additionally the blocks can explode. The explosion may
affect the table or other blocks.

• Elevators: this domain consists of a set of coins arranged in different levels. To
collect them, the elevators can move among the levels. The movements can fail
if the elevator falls down the shaft and finishes on a lower level.

• Tire World: in this domain a car has to move between two locations. When the
car drives a part of the route, there is the possibility of a flat tire. When this occurs
the tire must be replaced. However, spare tires are not available in all locations.

• Zenotravel: this domain has actions to embark and disembark passengers from an
aircraft that can fly at two alternative speeds between locations. The actions have
a probability of failing without causing any effects. So, actions must sometimes
be repeated.

Results

There are 15 problems for each domain. So, the maximum number of successful
rounds for each domain is 15 · 30 = 450. Table 1 shows the number of success-
ful rounds for FFH, FFH+, FPG and PIPSSI planners in each domain. PIPSSI gets
good results in three of the five domains. Concretely, the higher successful rates
are obtained in those domains like Exploding BlocksWorld or TireWorld that have
dead-end states despite PIPSSI does not deal with dead-end states yet. This is evi-
dence that we are generating relatively low cost (high probability) plans. However,
in classical domains like BlocksWorld or Zeno, PIPSSI perfoms poorly. Although
we get good results in problems with dead end states, we are surprised that in classi-
cal problems we obtain worse results. Then, we need to analyze how the calculation
of the interactions affects this type of problems.

Table 1 Successful Rounds on the IPPC-06
PLANNERS

DOMAINS FFH FFH+ FPG PIPSSI
Blocks World 256 335 283 113

Exploding Blocks World 205 265 193 180
Elevators 214 292 342 342

Tire World 343 364 337 351
Zeno Travel 0 310 121 50

TOTAL 1018 1566 1276 1003

Yolanda E-Martı́n and Marı́a D. R-Moreno and David E. Smith

4.2 The 2008 IPPC Domains

The Uncertainty Part of the 6th International Planning Competition had three diffe-
rent tracks: fully observable probabilistic (FOP), non-observable non-deterministic
(NOND) and fully observable non-deterministic (FOND). Again we have used the
FOP track, which contains the following domains:

• Blocks World: Similar to IPPC-06 Blocks World Domain.
• Exploding Blocks World: Similar to IPPC-06 Exploding-BlocksWorld Domain.
• 2-Tire World: Similar to IPPC-06 Tire World Domain but with slight differences

in the definition to permit short but dangerous paths.
• Search and Rescue: in this domain there is a helicopter on a rescue mission. To

achieve its mission, it has to explore several areas to find one that is landable and
close to the human to rescue.

• SysAdmin-SLP: this domain consists of a system administrator that has to ma-
nage a network of servers that fail with a higher probability when a neighbouring
server is down. The objective is to restart servers. However, there is the possibi-
lity that the network is completely down.

Results

There are 15 problems for each domain. So, the maximum number of successful
rounds for each domain is 15 · 30 = 450. The results in Table 2 shown that again
PIPSSI has a low successful rate in those domains with no dead end states like
BlocksWorld. In the Exploding BlocksWorld domain, PIPSSI obtains better results
than the winner planner of the IPPC, the RFF planner. However, it gets low number
of successful rounds compare to the other two planners. In the 2-TireWorld domain,
it gets a poorly rate. That is because, this domain leads on a high number of dead
end states that are not supported by PIPSSI . In the SysAdmin-SLP and Search and
Rescue domains PIPSSI was unable to solve any problem because there are some
PDDL expressions (i.e. exists, imply) that PIPSSI cannot yet handle.

Table 2 Successful Rounds on the IPPC-08
PLANNERS

DOMAINS FFH FFH+ RFF PIPSSI
Blocks World 185 270 364 120

Exploding Blocks World 131 214 58 85
2-Tire World 420 420 382 42

Search and Rescue 450 450 0 0
SysAdmin-SLP 0 0 117 0

TOTAL 1186 1354 921 247

Using a Plan Graph with Interaction Estimates for Probabilistic Planning

4.3 Probabilistically Interesting Domains

Little and Thiebaux have created a number of very simple problems that explore
the issue of probabilistic planning vs replanning. These problems lead to dead-ends.
These may show the true behavior of the planner because several reasons as men-
tioned in [9]. First, the presence of dead-end states where the goal is unreachable.
Second, the degree to which the probability of reaching a dead-end state can be re-
duced through the choice of actions. Third, the number of distinct trajectories from
which the goal can be reached from the initial state. Finally, the presence of mutual
exclusion of choices that exclude other courses of action later.

Results

There is one problem for each domain so, the maximum number of successful
rounds for each domain is 30. Table 3 shows that in this test, PIPSSI completes
all the rounds for the Climb domain and gets the highest successful rate for the
River domain. For the Tire domain, when the number of tires is low, PIPSSI gets a
good rate, but when this number increases it does not solve any round.

Table 3 Successful Rounds on Probabilistically Interesting Benchmarks
PLANNERS

DOMAINS FF-Replan FFH FFH+ FPG PIPSSI
Climb 19 30 30 30 30
River 20 20 20 20 23
Tire1 15 30 30 30 21
Tire10 0 6 30 0 0
TOTAL 54 86 110 80 74

5 Conclusions and Future Work

In this paper we have presented a novel plan graph heuristic. This heuristic estimator
is used to guide the search towards high probability plans. The resulting plans will
be used in a system that handles unexpected outcomes by runtime replanning.

According to the results of the 2006 IPPC and 2008 IPPC, the combination of
deterministic planning and replanning seems to be the best. Although our planner
does not deal with dead-end outcomes, the results dealing with probabilistic plan-
ning problems have high success rates in several cases. This is evidence that we are
generating relatively high probability seed plans. However, replanning is not enough
to dealing with those cases in which the dead-end states cannot achieve a solution
plan. For this reason, our future work involves analyzing the generated seed plans
to find potential points of failure which will be identified as recoverable or unre-
coverable. Recoverable failures will be left in the plan and will be repaired through
replanning at execution time. For each unrecoverable failure, an attempt will be
made to improve the chances of recovery, by adding precautionary steps such as
taking along extra supplies or tools that would allow recovery if the failure occurs.

Yolanda E-Martı́n and Marı́a D. R-Moreno and David E. Smith

Acknowledgements This work is funded by the Junta de Comunidades de Castilla-La Mancha
project PEII11-0079-8929. We want to thank Bonifacio Castaño for his help during the develop-
ment of this work.

References

1. A. Blum and J. Langford. Probabilistic Planning in the Graphplan Framework. In Proceedings
of The 5th European Conference on Planning. Durham, UK, 1999.

2. A. Blum and M. Furst. Fast Planning Through Planning Graph Analysis. Artificial Intelli-
gence, vol. 90, pp: 281-300, 1997.

3. B. Bonet and H. Geffner. Planning as Heuristic Search. Artificial Intelligence, vol. 129, pp:
5-33, 2001.

4. B. Bonet and R. Givan. International Probabilistic Planning Competi-
tion.http://www.ldc.usb.ve/˜bonet/ipc5, 2006.

5. D. Bryce and D. E. Smith. Using Interaction to Compute Better Probability Estimates in Plan
Graphs. In Proceedings of The ICAPS-06 Workshop on Planning Under Uncertainty and Exe-
cution Control for Autonomous Systems. The English Lake District, Cumbria, UK, 2006.

6. F. Teichteil-Königsbuch and U. Kuter and G. Infantes. Incremental Plan Aggregation for Ge-
nerating Policies in MDPs. In Proceedings of the 9th International Conference on Autonomous
Agents and Multiagent Systems. Toronto, Canada, 2010.

7. H. L. S. Younes, M. L. Littman, D. Weissman and J. Asmuth. The First Probabilistic Track
of the International Planning Competition. Journal of Artificial Intelligence Research, 24, pp:
841-887, 2005.

8. I. Little and S. Thiébaux. Concurrent Probabilistic Planning in the Graphplan Framework. In
Proceedings of ICAPS-06 Workshop on Planning Under Uncertainty and Execution Control
for Autonomous Systems. The English Lake District, Cumbria, UK, 2006.

9. I. Little and S. Thiébaux. Probabilistic Planning vs Replanning. In Proceedings of ICAPS-07
Workshop on Planning Competitions. Providence, Rhode Island, USA, 2007.

10. J. Baxter and P. L. Bartlett. Direct Gradient-Based Reinforcement Learning: I. Gradient Esti-
mation Algorithms. Technical Report. Australian National University, 1999.

11. J. Hoffmann and B. Nebel. The FF Planning System: Fast Plan Generation Through Heuristic
Search. Journal of Artificial Intelligence Research, 14, pp: 253-302, 2001.

12. O. Buffet and D. Bryce. International Probabilistic Planning Competition.
http://ippc-2008.loria.fr/wiki/index.php/Main Page, 2008.

13. O. Buffet and D. Aberdeen. The Factored Policy Gradient Planner. In Proceedings of the 5th
International Planning Competition. The English Lake District, Cumbria, UK, 2006.

14. S. Jimenez, A. Coles and A. Smith. Planning in Probabilistic Domains using a Deterministic
Numeric Planner. In Proceedings of the 25th Workshop of the UK Planning and Scheduling
Special Interest Group. Nottingham, UK, 2006.

15. S. Yoon, A. Fern and R. Givan. FF-Replan: A Baseline for Probabilistic Planning. In Procee-
dings of the 17th International Conference on Automated Planning and Scheduling. Provi-
dence, Rhode Island, USA, 2007.

16. S. Yoon, A. Fern, R. Givan and S. Kambhampati. Probabilistic Planning via Determinization
in Hindsight. In Proceedings of the 23rd AAAI Conference on Artificial Intelligence. Chicago,
Illinois, USA, 2008.

17. S. Yoon, W. Ruml, J. Benton and M. B. Do. Improving Determinization in Hindsight for On-
line Probabilistic Planning. In Proceedings of the 20th International Conference on Automated
Planning and Scheduling. Toronto, Canada, 2010.

18. Y. E-Martı́n, M. D. R-Moreno and B. Castaño. PIPSS*: a System based on Temporal Esti-
mates. In Proceedings of the 30th Annual International Conference of the British Computer
Society’s Specialist Group on Artificial Intelligence. Cambridge, UK, 2010.

