
FAST PATH-PLANNING ALGORITHMS FOR FUTURE MARS EXPLORATION

Pablo Muñoz1, Marı́a D. R-Moreno1, Agustin Martı́nez1, and Bonifacio Castaño2

1Dpto. de Automática, Universidad de Alcalá, Email: {pmunoz, mdolores, hellin}@aut.uah.es
2Dpto. de Matemáticas, Universidad de Alcalá, Email: bonifacio.castano@uah.es

ABSTRACT

ESA Mars Robotic Exploration Preparation is expected
to use rovers to explore the planetary surface after land-
ing. Deciding where to land is crucial to maximize the
safe rover operation and achieve the science targets of
the mission. For this reason, it is important to try to plan
optimal (or close to optimal) routes using the terrain in-
formation provided by the orbiters and the previous maps
of Mars.

In this paper we want to describe our work in any-
angle path planning algorithms and the map generation
parametrization in order to provide a better way to com-
pare them.

Key words: Search algorithms; mission planning; navi-
gation.

1. INTRODUCTION

The moves of a rover on the Martian surface are guided
by the waypoints where scientists expect to find some in-
teresting data. For this reason, it is important to try to plan
optimal (or close to optimal) routes using the terrain in-
formation provided by the orbiters and the previous maps
of Mars.

Path-planning is a widely discussed problem in the lit-
erature. The objective is to get a nearly optimal path,
avoiding the obstacles in the terrain. Most of the work is
focused on the optimality of the path using the length or
the speed for generating a solution for comparison. How-
ever, depending on the features of the robot locomotion
subsystem, it may be preferable to use paths with longer
distances but with lower number of heading changes.

Severall classical AI algorithms have been applied to
solve the path-planning problem, such as A* [1], A* Post
Smoothed (A* PS) [3], Field D* [4] or, more recently,
Theta* [6]. All of them are variations of the A* algorithm
that includes new features, like replanning schemes and
ability to work over partially unknown terrains in Field
D* or the generation of any-angle paths in Theta*.

However, there are still questions that do not appear in the
literature. Our work addresses some of the gaps related
to typical path planning over grids using A* search al-
gorithm and others extensions, such as A* PS or Theta*.
For example, when we deal with real environments on a
planetary surface, the height must be taken into consid-
eration. This implies that the algorithm must work with
a 3D representation of the terrain. There are enhanced
path-planning algorithms for 3D environments for Field
D* (3D Field D* [5]) or Theta* (Lazy Theta* [10]), but
their targets are aerial or underwater vehicles. So, these
algorithms are not useful for a rover on a Planetary sur-
face.

For classical path-planning algorithms the environment
is usually represented as a two-dimensional grid with
blocked and unblocked cells [2]. There are two types
of representations: the nodes can be in the center of the
grid (center node representation) or the nodes can be on
the corner of the grid (corner node representation). Our
algorithm works with any of these classical representa-
tions, but in order to obtain a 3D digital elevation map
(DEM) we need to add the height value for each point of
the grid. Also, this representation allows us to consider
the transversal cost for each region of the grid.

Our work proposes three importants contributions: first,
the characterization of the heading changes made by the
search algorithm. In the literature we can observe that
it usually appears the number of heading changes, but
not how large are those. In a rover mission, for exam-
ple, it could be better to do more turns when these turns
are softer (rotation usually involves high power consump-
tion) than shorter paths with abrupt direction changes.
Second, and related to the last measure, we have im-
proved a metric that tries to guide the search algorithm
in order to avoid large heading changes and reduce the
number of vertex expansion during the search. Last fea-
ture seeks the possibility of integrating the search algo-
rithm in the, usually, limited computer of a rover. Finally,
there is the issue of contrasting the obtained results with
those reported in the literature. We can find comparatives
among algorithms using some parameters (path length,
search time, number of heading changes or vertex expan-
sion) obtained from the resolution of a large number of
random generated maps. But each reported algorithm has
a particular method for generating those maps. Then, we
want to parametrize the random maps generation in order

to provide a better way to compare path-planning algo-
rithms.

We think that the integration of heading changes
parametrization and the standardization of maps gener-
ation methods would allow to provide a better compari-
son of path planning algorithms, and it will also allow us
to select the best algorithm depending on the particular
needs of our system.

The paper is structured as follows. Section 2 describes the
heading changes parametrization that can be introduced
in any path-planning algorithm. Next, section 3 shows the
maps generation setting. To continue with the methods to
discretize the digital elevation maps that can be applied
for these algorithms. Finally, conclusions are outlined.

2. HEADING CHANGES CHARACTERIZATION

In order to compare path-planning algorithms, the length
of the resulting path is usually employed as a measure of
the optimality of the solution. Besides, there are other
parameters such as the expanded nodes or the execution
time. However, in the literature we cannot find the num-
ber of heading changes (or the associated cost). In the
case of a mobile robot, the cost of making a turn can
be higher than moving forward half a meter. In order
to select a path-planning algorithm for a mobile robot we
can take into consideration how this parameter affects the
quality of the path.

We define the β parameter as the accumulated value of
all heading changes (considering that the robot is oriented
towards the first node of the resulting path) between the
start and the goal nodes. This is formally expressed in eq.
1.

β =

n−2∑
i=1

βi (1)

βi = |angle(pi+2, pi+1)− angle(pi+1, pi)|
βi = 360− βi when βi > 180

being pi = parent(pi+1) and pi+1 = parent(pi+2)

Each heading change, βi, is the angle variation produced
when the robot goes from node pi to node pi+2 through
node pi+1. In other words, βi is the resultant angle of the
intersection of a line that crosses the nodes pi and pi+1,
and the line that crosses the nodes pi+1 y pi+2. Also, the
involved nodes must have the parent relationship shown
in eq. 1. However, we assume that a robot can rotate
both to the left and to the right, so, in case of the resultant
angle βi is greater than 180◦, it must be reduced to obtain
an angle in the interval [0◦, 180◦].

We can use the average heading change value
(β
heading changes) as a comparative parameter, but an av-

erage has a significant loss of information. So we con-
sider that we must take into consideration both the path
length and the β value in order to compare path-planning
algorithms.

By taking into consideration the heading change value
during the search process as part of the evaluation func-
tion, we can open two areas of study. The first of these
considers heading changes as part of the heuristic func-
tion and the second, includes them as part of the cost
function. Next subsections explain both cases.

2.1. Improving the heuristic function

The employment of βi as part of the heuristic function
is described in [12]. It can be used in any heuristic al-
gorithm and aims to expand only the nodes that are near
(or are contained) in the straight line that connects the
start and the goal nodes. This line is the smallest dis-
tance between these two nodes if there are no obstacles
blocking the path. Thus, the search algorithm degener-
ates into a greedy search algorithm. But this behaviour
has disadvantages: usually the path-length is higher than
the obtained by the original algorithm and the β value is
not guaranteed to improve.

But the results show that this term has three advantages:
first, it is easy to implement, and is valid for any path-
planning algorithm based on A*. Second, we can mod-
ify the behaviour of the weight of βi to deal with the
runtime and the degradation of the other parameters. If
the only parameters to consider are the path-length and
the runtime, we can boost up three times the runtime of
A*PS and two times for Theta*, with a little bit longer
paths than the original algorithms. Finally, it affects to
the memory requirements because the algorithm expands
less nodes, and thus, less memory is employed during
the search. That is, in a robot implies less time spent in
searching, and thus, less battery energy required. Also
for the same grid size we need less memory.

2.2. Improving the cost function

Using βi as part of the cost function has stronger implica-
tions over the path-planning algorithm than if it was part
of the heuristic function. Also, the scheme presented in
the last subsection shows that it would cause undesirable
heading changes since one could rarely follow a straight
line from the start to the goal nodes. This is due to the
fact that the “guide” is fixed during the search process.

The Smooth Theta* (S-Theta*) [13] algorithm that we
have developed from Theta* [9], aims to reduce the
amount of heading changes (β) that the robot should per-
form to reach the goal. To do this we include the βi as part
of the cost function. To calculate this value, we use three
nodes: the position’s successor, the position’s parent and
the goal node. So, βi gives us a measure of the devia-
tion from the optimal trajectory to achieve the goal as a

function of the direction to follow, subject to traversing a
particular node. So, the algorithm will also discriminate
the nodes in the open list depending on the orientation of
the search. This implies that a node in the open list may
be replaced, which means that its parent will be changed
due to a lower value of βi. In contrast, Theta* updates
a node depending on the distance to reach it, regardless
of its orientation. As a result, the main difference with
respect to Theta* is that S-Theta* can produce heading
changes at any point, not only at the vertex of the obsta-
cles.

The S-Theta* algorithm improves the original Theta* al-
gorithm on the number of heading changes and its accu-
mulated cost, in exchange for a slight degradation on the
length of the path as the results in [13] show. Taking into
consideration that an optimal solution is the one that in-
cludes both the length of the path and the cost associated
for turning, S-Theta* gets better results than Theta*. In
addition, since S-Theta* expands fewer nodes than the
original Theta*, it will require less memory, which is al-
ways a plus in embedded systems, typically limited by
memory and computation.

3. MAPS GENERATION

In order to perform comparative tests over several path-
planning algorithms, two strategies are generally ap-
proached. The first one consist of using previously gen-
erated map sets, typically obtained from games. The sec-
ond one is the randomly-generated maps. However, the
form in which these maps are generated it is rarely indi-
cated. Therefore what we propose in this paper is a gen-
eration schema based on parameters. This method dif-
ferentiates two parts: the digital elevation map (DEM)
generation and the obstacles positioning.

The elevation map will be generated by using the Hill al-
gorithm. The logic of this algorithm consists of selecting
a point of the map randomly. Based on that point, and
by selecting a radio value given by the user, the point’s
surrounding circle will be increased by one unit. This
process has to be iterated as many times as requested, as
shown in the pseudocode of fig. 1.

FOR i = 0 TO N
DO

Px,Py = RANDOM x,y in map
FOR ALL Tx,Ty in CIRCLE with
center Px,Py and radius R DO

z(Tx,Ty)++
DONE

DONE

Figure 1. DEM generation

With respect to the obstacles generation, enabling at least
one path between each pair of nodes in each generated

map, has to be ensured. What needs to be specified firstly
is the percentage of cells within the map that will be
blocked. The maximum percentage of blocked cells will
depend on the size of both the map and the obstacles. The
reason behind it is because, in order to ensure that there
is always at least one valid path between two nodes when
positioning an obstacle in the terrain, the perimeter will
be protected by avoiding that subsequent obstacles could
position themselves on that particular coordinate. Like
that it will always be possible to avoid an obstacle by sur-
rounding it. Thereby the pseudocode shown in fig.3 will
be used to position the obstacles. First, the number of
blocked cells will be calculated depending on the size of
the map. Secondly, the creation of the obstacles will be
approached in a similar manner than the DEM, by choos-
ing a random coordinate and creating an obstacle with
the given dimensions. After this, the obstacle’s perimeter
will be protected to prevent superimposing an obstacle in
that same area. This process will be repeated until the
number of blocked cells is met.

i = (O * rows * cols) / 100
WHILE i > 0
DO

Px,Py = RANDOM x,y in map
FOR Tx = Px TO Px+DX
DO

FOR Ty = Py TO Py+DY
DO

IF i > 0 AND Tx,Ty != protected
AND Tx,Ty != obstacle

Tx,Ty = obstacle
i--

ENDIF
DONE

DONE
protect perimeter obstacle

DONE
// Next only for transversal costs
FOR i = 0 TO M
DO

Px,Py = RANDOM x,y in map
c = RANDOM cost value
FOR Tx = Px TO Px+CX
DO

FOR Ty = Py TO Py+CY
DO

IF Tx,Ty != obstacle
cost(Px,Py) = c

ENDIF
DONE

DONE
DONE

Figure 2. Random obstacles fill

Finally, if costs are to be included, these will be added
after positioning the obstacles. This process is shown in
fig. 2 and is as follows. Firstly, a random position is se-
lected along with a random cost value within a particular

range. From this point onwards, a rectangular region of
specified dimensions, by using the obtained cost, will be
created. The blocked cells will be ignored and the process
will be repeated a desired number of times. Those cells,
which its associated cost has not been modified, will re-
main always with the initial value, being this value the
unit.

The required parameters to define a test bench are the
ones outlined in table 1. N and R parameters correspond
to the elements used to generate the height in the maps;
O, DX and DY are required in order to generate the obsta-
cles, and finally, and in case of including the transversal
costs, the M, CX and CY parameters must be specified
as well as the costs range value. Additionally, it has to
be specified whether the center-node or the corner-node
schemas are used.

4. TERRAIN DISCRETIZATION

For classical algorithms like A*, include the height of
the points does not make any significant difference when
working with the DEM, since we can know the height of
all points since the movement is restricted to the vertices.
However, in any-angle algorithms, we can traverse a cell
at any point. Then, we do not know the height of that
position, being necessary to give an approximate value.

Some approximations like the one applied to Theta* [11]
imply that the calculation cost is not computationally ex-
pensive, but involves obtaining approximate values. Al-
though the values can be close to the real ones, they could
add an important margin error when working with long
paths.

The maps and classic algorithms generation that are used
to obtain a particular path are applied to the terrain
discretization. Due to this process, some information
about the terrain is lost, being it inversely proportional
to the number of points, and directly proportional to
the distance between them. In order to apply the path-
planning algorithms consistently so it enables generating
any-angle paths, it is necessary to obtain the correct cost
between two points.

To try to solve this, two interpolation methods are pro-
posed that try to obtain the values. In the example we are
describing, we will exemplify the data by using the height
of each point, which allows us to obtain more adjusted
and realistic results. Next subsections explain these two
methods.

4.1. Linear interpolation

The first and simplest version is the linear interpolation.
When crossing a region between two points A and B, if
we know the height of these two points and the cutoff
point, we can calculate the real value of the height for

Figure 3. Lineal interpolation example

that point. This approximation has a slight computational
cost, which can be very useful for calculating the costs
associated with, for example, the battery, or, in general,
costs that behave in a linear way. However, with respect
to the discretization of a surface, it would only be useful
when working with flat surfaces. This could be a disad-
vantage of its application in planetary exploration since it
makes it less effective. Figure 3 shows an example of a
lineal interpolation over a surface.

4.2. Quadratic interpolation

The quadratic interpolation has as a main objective to
model the terrain height in a more lifelike, and therefore,
it is more useful for planetary environments. Starting
from matrices of a minimum of 3x3 points, we can calcu-
late the height of any point in the interpolation range of
a surface. With this method it softens the terrain by not
behaving abruptly as does the linear interpolation. The
best way to apply this method is to locally perform the
interpolation, with a set of points arranged symmetrically
in the region where we want to calculate the unknown
height of a coordinate. We also need to keep in mind that
the computational cost of this method is very high and it
will grow as a function of the number of points used in
the interpolation.

Figure 4 shows both the interpolation done by the two
methods. On the bottom, we can see the linear interpo-
lation obtained with the height of 9 points and superim-
posed, the quadratic interpolation used to calculate the
height.

5. CONCLUSIONS

This paper makes four important contributions. First,
the characterization of the heading changes made by any
search algorithm. In a rover mission, for example, it
could be better to do more turns when these turns are
softer than shorter paths with abrupt direction changes.
Second, and related to the last measure, we have im-
proved a metric that tries to guide the search algorithm
in order to avoid large heading changes and reduce the

Table 1. Map generation parameters
Param Definition Range

N Number of points to elevate DEM [0..inf]
R Radius of the circle to elevate [1..min(cols,rows)]
O Percentage of obstacles [0%..80%]

DX First dimension of the obstacle [1..cols]
DY Second dimension of the obstacle [1..rows]
M Number of variable transversal costs regions [0..inf]

CX First dimension of the transversal cost region [1..cols]
CY Second dimension of the transversal cost region [1..rows]

Figure 4. Example of a quadratic interpolated region
within its linear one

number of vertex expansion during the search. Third, the
parametrization of the random maps generation in order
to provide a better way to compare path-planning algo-
rithms. Last, the use of some methods for the discretiza-
tion of 3D digital elevation maps (DEM).

ACKNOWLEDGMENTS

Pablo Muñoz is supported by the European Space
Agency (ESA) under the Networking and Partnering Ini-
tiative (NPI) Cooperative systems for autonomous explo-
ration missions.

REFERENCES

[1] P. E. Hart, N. J. Nilsson and B. Raphael. A Formal
Basis for the Heuristic Determination of Minimum
Cost Paths, IEEE Transactions on Systems Science
and Cybernetics, vol. 4, pp. 100-107, July 1968.

[2] P. Yap. Grid-Based Path-Finding, Advances in Ar-
tificial Intelligence, Lecture Notes in Computer Sci-
ence, vol. 2338, pp. 44-55, 2002.

[3] A. Botea, M. uller and J. Schaeffer. Near Optimal
Hierarchical Path-Finding, Journal of Game Devel-
opment, vol. 1, pp. 1-22, 2004.

[4] D. Ferguson and A. Stentz. Field D*: An
Interpolation-based Path Planner and Replanner, In

Procs. of the International Symposium on Robotics
Research (ISRR), Oct. 2005.

[5] J. Carsten, D. Ferguson and A. Stentz. 3D Field D*:
Improved Path Planning and Replanning in Three
Dimensions, In Procs. of the Intelligent Robots and
Systems, IEEE/RSJ International Conference, pp.
3381-3386, Oct. 2006.

[6] A. Nash, K. Daniel, S. Koenig and A. Felner.
Theta*: Any-Angle Path Planning on Grids, In
Procs. of the AAAI Conference on Artificial Intel-
ligence, pp. 1177-1183, 2007.

[7] M. Kanehara, S. Kagami, J.J. Kuffner, S. Thompson
and H. Mizoguhi. Path Shortening and Smoothing
of Grid-Based Path Planning with Consideration of
Obstacles, In Procs. of the IEEE International Con-
ference on Systems, Man and Cybernetics, ISIC, pp.
991-996, Oct. 2007.

[8] G. Ayorkor, A. Stentz and M. B. Dias. Continuous-
field Path Planning with Constrained Path-
dependent State Variables, In Procs. of the ICRA
2008 Workshop on Path Planning on Costmaps,
May 2008.

[9] K. Daniel, A. Nash, S. Koenig and A. Felner.
Theta*: Any-Angle Path Planning on Grids, Jour-
nal of Artificial Intelligence Research, vol. 39, pp.
533-579, 2010.

[10] A. Nash, S. Koenig and C. Tovey. Lazy Theta*:
Any-Angle Path Planning and Path Length Analysis
in 3D, In Procs. of the AAAI Conference on Artifi-
cial Intelligence, pp. 147-154, July 2010.

[11] S. Choi and W. Yu. Any-angle Path Planning on
Non-uniform Costmaps, In Procs. of the IEEE Inter-
national Conference on Robotics and Automation,
pp. 5615-5621, May 2011.

[12] P. Muñoz and M. D. R-Moreno. Improving Effi-
ciency in Any-Angle Path-Planning Algorithms, In
Procs. of the IEEE International Conference on In-
telligent Systems, Sept. 2012.

[13] P. Muñoz and M. D. R-Moreno. S-Theta*: low
steering path-planning algorithm, In Procs. of the
Thirty-second SGAI International Conference on
Artificial Intelligence, Dec. 2012.

