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Abstract. The loss of motor function in the elderly makes this popu-
lation group prone to accidental falls. Actually, falls are one of the most
notable concerns in elder care. Not surprisingly, there are several tech-
nical solutions to detect falls, however, none of them has achieved great
acceptance. The popularization of smartwatches provides a promising
tool to address this problem. In this work, we present a solution that ap-
plies machine learning techniques to process the output of a smartwatch
accelerometer, being able to detect a fall event with high accuracy. To
this end, we simulated the two most common types of falls in elders, gath-
ering acceleration data from the wrist, then applied that data to train
two classifiers. The results show high accuracy and robust classifiers able
to detect falls.
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1 Introduction

Falls in the elderly are a public health problem [1]. They are not only a significant
source of problems associated to elderly for their direct consequences (such as
traumas), but also because falls are the symptom of infirmity (such as hearth
attack). Therefore, it is not surprising that falls are one of the most relevant
concerns for elders care professionals and their families.

The importance of this topic has motivated the rise of a notable number of
solution proposals. Most of them have in common the usage of accelerometers [2].
The small size, availability in cell phones and respect to privacy explain why
they are becoming so popular in falls detection. Many approaches use dedicated
devices, usually placed on the trunk [3], while others exploit the capabilities and
popularity of smartphones [4, 5]. A similar approach was successfully used to
build kinematics models of upper limps [6] and applied to home rehabilitation [7].

Image processing is another popular approach to fall detection [8–10], how-
ever, it poses some practical problems which in this context are determinant.
People use to dislike having cameras in their private spaces, even if they do
not record or transmit images. We should also mention the need to install cam-
eras and their limitations to the screened areas. A third group of fall detection
systems uses sound or vibrations [11].



Perhaps a notable motivation for elders to reject fall detection devices is
their size, which leads to inadequate ergonomics [2]. Fall detection based on cell
phones do not present that problem, but raises new ones when they are used
by the elderly. Perhaps the most notable one is that they do not keep the cell
phone on them when being at home, where most of the falls happen. There are
other additional problems, for instance, women use to keep their cell phones in a
handbag, where fall detection algorithms will likely fail because they are trained
to detect falls through acceleration sensors close to the body trunk.

In order to overcome the usage disadvantages of previous devices, we pro-
pose to exploit the popularity of smartwatches. Most of them are programmable
devices, and include rich sensing such as accelerometers. Some advanced models
even include heart monitors and communication capabilities. All those features
together with the price reduction provide a good opportunity of improving elders
caring. Some of the problems with cell phones do not happen when using smart-
watches: they are located always in the same place, regardless of gender and
age, and perhaps more important in elderly people, they are considered every
day objects and thus they are not perceived as something invasive. Therefore,
we believe these features will help reducing their adoption resistance. In this
paper, we present a Machine Learning (ML) -based fall- detection algorithm im-
plemented in a smartwatch. Our results show the accuracy of the classifiers used
over the datasets generated under the supervision of professionals in the field.

The rest of the paper is structured as follows. Next, a discussion about the
types of falls in elders, then it describes the data acquisition procedure. Section 4
describes the data preprocessing. The main contribution is located in section 5,
which describes the training and evaluation of the falls detection algorithm.
The robustness of the proposed algorithm is evaluated in section 5.4. The paper
finishes with conclusions and future work.

2 Types of falls in elders

Our goal is to implement a falls detection algorithm in a smartwatch to mon-
itor the elderly. In order to detect the falls, we pose the problem in terms of
classification: given the acceleration values in a time window, classify them as
corresponding to a fall or not. Since the final aim is to implement a classifier
in a device (a smartwatch) with limited capabilities, the classifier resources con-
sumption is an issue that needs to be taken into account.

As most ML applications, an important issue is how to gather high quality
data to train and test the classifiers. In this particular application, data gathering
involves people falling, which implies obvious health risks. Other approaches
have used volunteers to simulate the fall, who used to be healthy young people,
sometimes they were skilled in some martial art or used protections to minimize
the risks. This can be a threat the validity as it can suppose a bias to the results,
however, data gathering of real falls with elder people is a costly, risky and time
consuming task [12], just to mention the most obvious difficulties.



The target of our work is elderly people care, whose falls follow specific
dynamics. Elders suffer loose of mobility, which translates to slower motion and
increased reaction time. In case of a fall, a young healthy person would react
moving his/her arms to cushion the hit; on the contrary, elders do not tend to
react in time, resulting in more violent hits. Another relevant issue for our work
is the shift of the center of gravity in elders. With age, people tend to separate
their legs, and curve the trunk forward, this implies that the center of gravity
in elders tend to be lower and shifted forward. As a consequence, falls in elders
rarely happen laterally or backwards.

There are usually two types of falls in elders, which we name syncope and
forward falls. We refer to syncope falls to those falls consequence of a loss of
conscience or hearth condition that prevents using the muscles to control the
fall. It results in a vertical motion and a two stages fall: first the knees impact
on the ground, and then the trunk moves forward until it hits the ground. The
second type of fall usually found in elders is what we name forward falls. They are
originated by the collision of a foot with an object while the person is walking,
loosing the equilibrium and falling over. The trunk in this type of falls moves
forward, and given the increased reaction time of elders, the trunk hits the
ground without the hands cushioning.

Given the different dynamics of the falls, it seems reasonable to address them
as two different, yet related, problems. To this end we will train two different
classifiers, each one specialized in detecting one type of fall. In Section 5.4 we
study the ability of the classifiers to detect falls of a different type they were
trained to do so.

3 Data acquisition

Acquisition of high quality datasets is a key process in ML. We used a smartwatch
with a triaxial accelerometer, the hardware imposed a sampling period of 20ms,
yielding three measures of acceleration (X, Y and Z) each 20 ms. The variable
Y stands for the longitudinal axis, X for the sideways axis and Z for the axis
perpendicular to the watch display.

A key problem to consider is how to build the base class labeled as ‘no
fall ’. We used data captured along a basket match, removing those samples with
accelerations lower than a given threshold. The idea is to keep samples containing
high accelerations. This is clearly an unrealistic activity for an elderly person,
but basket contains numerous vertical and horizontal motion, making it similar
to a fall. In this way we avoid the näıve problem of just classing motion and lack
of motion. If a classifier is correctly trained to distinguish between basket and
falls, it seems fair to assume that it will be able to distinguish between a fall and
normal activities in the life of an elder.

Using real falls was discarded given the risk of injuring the subject, specially
when our target is a fragile population group, the elderly. Therefore we tried to
capture as much data as realistically possible, taking all necessary measures to



avoid risks1. We defined two data acquisition procedures, one for for syncope
and another one for forward falls.

3.1 Syncope falls data capture procedure

Syncope falls are characterized by the lack of control, with gravity as the only
acting force. Other ML approaches to fall detection used volunteers to simulate
this type of fall. In our opinion, this scenario is better simulated by using a
nursing mannequin, which is a mannequin with the same joints mobility, size
and weight than an adult human. Of course, the results will also be biased, since
there is only one mannequin available for data gathering, but still the fall is more
realistic than a conscious simulating it.

The center of gravity of the mannequin used did not reflect perfectly well
the one found in an elderly person. For this reason, just releasing the mannequin
does not generate a realistic syncope fall; the mannequin tends to stop once
the knees hit the ground. In order to generate realistic falls, it was needed that
the mannequin was smoothly pushed forward when it was released. The whole
process was supervised by two Geriatrics experts. They helped to optimize the
procedure and judged which simulated falls were realistic, and which one should
be discarded.

We simulated 42 syncope falls, but the experts only validated 30 falls. There
were 12 simulated falls discarded for different reasons, in some cases the man-
nequin did not fall on its knees, or it hit the ground with the knees, but the trunk
did not move forward, or the trunk moved laterally. Falls lasted around 500ms,
but measurements begun shortly before and finished shortly after the fall. Given
the fact that each sample contains three acceleration values, and samples are
measured in 20ms intervals, each fall generated between 150 and 300 measures.

3.2 Forward fall data capture procedure

Forward falls begin with the subject walking, when the subject hits an obstacle
overbalancing and falling over. This scenario is poorly approximated with a
mannequin. In a forward fall, the subject does have some control, and actually
the reflex action is to raise the hands to cushion the hit. In elderly people this
reaction can be slow, and they usually do not have enough time to raise their
hands, resulting in more dangerous falls. In our opinion, this scenario is better
approximated using a healthy young subjects that were trained to move slowly.
This is not easy because falling over in that way seems unnatural for the subject,
but the results are more accurate according to the geriatric experts consulted.

Therefore, we selected a young volunteer and placed him on a tatami for
safety. The obstacle was a thick pad, which also served to safety stop the fall.
The domain experts trained the volunteer not to use his hands and move slowly.
Once the training was finished, the data capture begun. To simulate the fall,
the volunteer begun to walk and after 4-5 steps hitting the pad with a foot and

1 All datasets are available on http://atc1.aut.uah.es/~david/ideal2016
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(a) Syncope fall acceleration
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(b) Forward fall accelerations

Fig. 1: Example of accelerations measured on the wrist.

falling over. Given that data might be affected by which foot hit the pad, we
repeated the process the same number of times with each foot.

The volunteer simulated 47 falls, but the experts only validated 40, 20 for
each feet. In order to assess the robustness of the classifier, we gathered data
from 20 valid falls of two other volunteers. The duration of each fall is around
one second.

Figure 1 visualizes the acceleration in a typical (a)syncope and (b)forward
fall. In the syncope fall the two hits (knees and trunk) are clearly visible, while
the forward fall shows first smooth accelerations due to walking, the fall over
and finally the subject laying.

4 Data preprocessing

Data needs some preprocessing in order to feed the classifier. We grouped data
in time windows, which contains samples that serve as input to the classifier.
This is also an indirect way to consider history, since the time window contains
historical values of acceleration. All windows containing a fall were manually
labeled as ‘fall’, while windows coming from a basket match were labeled as
’not-fall’.

The time window width is a key parameter, we set the width to contain the
fall values. We analyzed several syncope falls, observing that the average duration
(see Fig. 1) is 500ms, so we set the time window for syncope fall detection to
500ms. Similarly, the window length for forward falls was set to 1200ms.

In addition to raw data coming from the accelerometer, we introduced new
attributes summarizing those values. In particular, for each window, we com-



Table 1: Attributes under consideration to feed the classifiers: Acceleration in
X, Y and Z axis along with mean and standard deviation for each axis. N is the
number of samples in the window, which depends on the dataset.

Attribute Label No. of attributes

Acceleration X AccelX[X1, ...,xN ] N

Acceleration Y AccelY[y1, ...,yN ] N

Acceleration Z AccelZ[Z1, ...,zN ] N

Mean X, Y and Z MeanX, MeanY, MeanZ 3

Std. deviation X, Y and Z DevX, DevY, DevZ 3

puted the mean and standard deviation of acceleration in each one of the three
axis. Those attributes, along with raw data were used to train the classifiers.
Table 1 summarizes the attributes considered, however their predictive power
greatly varies, as will be analyzed later.

An important issue about data is that it is unbalanced. Since falls are hard to
simulate, there were much more data coming from basket than from simulated
falls. To face this issue we undersampled the ‘not-fall’ class, getting the same
number of instances for each class. The evaluation of the classifiers was carried
out using 10-fold cross-validation.

5 Detection of fall events

Fall detection is addressed as a binary classification problem: classify acceleration
measures contained in a time window as ‘fall’ or ‘not-fall’. The dataset was
build as described in section 3 and then preprocessed to generate time windows,
derived attributes and labels as described in section 4.

The goal is to implement the classifier in a smartwatch, which means that
the classifier model generated should be as lightweight as possible (memory and
computationally). We considered some classical classifiers implemented in Weka
such as C4.5 (J48), 1-NN, Logistic regression, Näıve Bayes and PART. Some
of these classifiers such as 1-NN are not lightweight, but its good performance
motivated us to include them for comparison purposes.

5.1 Determination of sampling rate

An important parameter to be set is the sampling rate. Measures were taken
with a hardware that imposed a maximum sampling rate of 20ms, however, it
is possible that we could use a lower rate. We should consider that there is a
direct relationship between the sampling rate and the number of attributes and
therefore trying to reduce the sampling rate might pay off.

We also briefly studied the influence of the sampling rate with the accuracy
of the classifiers. To this end we evaluated the accuracy of several classifiers using
a range of sample periods. No feature selection was used. The results are shown
in Table 2. We can observe a pattern regardless of the classification algorithm,



Table 2: Evaluation of the influence of the sampling rate on the classifiers accu-
racy. The table shows the sampling rate, type of fall -syncope (S) or forward (F)-,
number of attributes (as indicated in Table 1) and accuracy of the classifiers.

Sample
period

Fall type # attrib C4.5 1-NN Reg. Log. Näıve Bayes PART

20ms S 97 95.38% 97.80% 90.26% 85.71% 95.82%

40ms S 52 92.10% 97.32% 87.48% 84.35% 91.65%

60ms S 37 88.38% 92.03% 87.24% 83.60% 87.70%

20ms F 82 95.66% 98.43% 88.76% 86.74% 94.09%

40ms F 46 91.97% 97.21% 89.34% 84.43% 92.62%

60ms F 34 88.45% 89.50% 84.25% 83.46% 85.04%

high sampling rates boost performance, at least in the range of values that we
have under consideration. The Nyquist Theorem states that there must be a
lower bound to the sampling period from which we should not expect further
performance improvements. Clearly this lower bound was not achieved as the
best performance value was with 20ms samples. Therefore, this was the chosen
value.

5.2 Overview of attributes classification power

The number of attributes used so far is relatively high. To illustrate this point,
let us consider a syncope fall window that lasts 500ms, 25 samples and each
sample with three values of acceleration (X,Y, Z), which yields to 75 attributes.
In addition, there are six derived attributes (mean and standard deviations),
resulting in 81 attributes. This high number of attributes may result in higher
computational costs and eventually may also degenerate the classifier perfor-
mance.

To reduce the number of attributes we estimated the predictive power of the
attributes. To this end we applied Correlation Feature Selection Subset Evalu-
ation, as implemented in Weka, This method evaluates the correlation of each
attribute with the class, as well as the correlation among the attributes, giving
better ranks to those attributes highly correlated with the class while having
low correlation among other attributes.

Table 3 ranks attributes by its predictive power suggesting that derived at-
tributes have higher predictive power in comparison to raw acceleration values.
In particular, the standard deviation on Y has the best score for syncope falls,
and gets the second position for forward falls. Mean acceleration on Z has the
second highest score in syncope falls, while appears as a good attribute for for-
ward falls. Raw data seems to have less predictive power, in particular on Z.
Interestingly, the mean Z acceleration get a pretty high score for syncope falls,
while raw acceleration values on Z does not appear in the table. Syncope fall
includes many raw acceleration values on X, with similar scores, this suggests
that those attributes may be highly correlated.



Table 3: Twelve best predictive attributes ranked by its correlation to the class
for syncope and forward falls.

Forward fall Syncope fall

% Inf. Attrib. % Inf. Attrib. % Inf. Attrib. % Inf. Attrib.

0.515 DevZ 0.173 AccelX1 0.541 DevY 0.233 AccelX11

0.429 DevY 0.163 MeanZ 0.523 MeanZ 0.232 AccelX8

0.399 MeanX 0.159 AccelZ24 0.238 AccelY12 0.229 AccelY11

0.316 DevX 0.154 AccelX2 0.235 AccelX7 0.229 AccelX9

0.209 MeanY 0.144 AccelZ23 0.235 AccelX12 0.227 AccelX10

0.195 AccelX0 0.135 AccelX3 0.233 AccelX13 0.226 AccelX14

Table 4: Performance of syncope (S) and forward falls (F) detection. Attribute
selection was performed using a wrapper.

C4.5 1-NN Log. Reg. Näıve Bayes PART

Accuracy
S 0.98 1 0.92 0.93 0.96
F 0.98 1 0.89 0.91 0.95

Recall
S 0.98 1 0.94 0.90 0.97
F 0.98 1 0.91 0.92 0.97

Attributes
S 12 7 16 9 7
F 9 13 11 12 7

The high score that derived attributes achieve and the hint of highly cor-
related raw acceleration values suggest that the number of attributes may be
reduced significantly. For this reason in the following section we will evaluate
the classifiers integrating the feature selection.

5.3 Evaluation of classifiers

Given the importance of feature selection, we have performed the classifier eval-
uation along with it using a wrapper approach. This method exploits the interac-
tion between the classifier and the attributes, yielding, in theory, better results,
specially where there are a high number of redundant attributes. We used the
Weka WrapperSubsetEval implementation of the method with Hill Climbing for
attribute search.

Table 4 summarizes the performance of the classifiers. For instance, C4.5
(J48 in Weka) with 97 attributes (Table 2) scores 95.38% accuracy, while using
wrapper feature selection it increases to 98% with only 12 or 9 attributes, de-
pending on the type of fall respectively. The other classifiers behave in a similar
way. The 1-NN classifier has an outstanding performance, with a perfect accu-
racy and recall. The similarity of the instances in the training set may explain
this; the robustness analysis done in the next section supports this hypothesis.
Despite the magnificent performance of 1-NN, the need to store all the training
set dissuades us to implement it in a smartwatch. However, it suggests that per-



Table 5: Performance of forward falls detection classifiers shown in Table 4 eval-
uated with a testing set composed by unseen people simulated falls.

C4.5 1-NN Log. Reg. Näıve Bayes PART

Accuracy F 0.91 0.66 0.97 0.98 0.98

Recall F 0.90 0.98 0.95 0.96 0.98

Attributes F 9 13 11 12 7

haps using a Nearest Centroid Classifier may conduct to a good classifier while
keeping low computational needs.

5.4 Robustness analysis of forward falls

A clear weakness of the previous approach is the lack of diversity in the training
set. Syncope falls used just a single mannequin, while forward falls included falls
from one person. This obviously reduces the complexity of the problem, and a
natural question that rises is how much the classifier degrades its performance
when exposed to different people. In order to provide an insight to this question,
we performed a robustness experiment.

Given the lack of alternative mannequin, we focused on forward falls. As de-
scribed in Section 3, we captured data from three people, one of them repeated
40 times the fall simulation, while the others repeated the simulation 20. We
exposed the classifiers trained with data coming from the first volunteer (whose
performance is shown in Table 4), to the simulated falls of the other two vol-
unteers. The resulting performance is shown in Table 5. As we expected, the
performance drops, but in most cases remains above 0.9. The most dramatic
case is with 1-NN, whose accuracy falls to 0.66. Logistic regression, Bayes and
PART seems quite robust and actually they increase the performance.

6 Conclusions and future work

In this paper we have described an ML application to detect falls sensing the
acceleration on the wrist. The aim is to implement a fall detection system in a
smartwatch oriented to the elderly care. This population is prone to suffer two
types of falls, syncope and forward falls. We simulated those type of falls and
measured acceleration on the wrist. These data, along with measures coming
from a basket match were used to train and evaluate a classifier with a wrapper-
based feature selection.

We selected PART for its high accuracy (above 0.9) and the relatively low
number of rules (7) it generated, which made unnecessary the use of external
libraries, an interesting feature when looking for a lightweight application. We
implemented the algorithm in Android Wear and tested on a Samsung Gear S,
with satisfactory results. In a near future we expect to expand the detection
with new sensors and an ensemble of classifiers.
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