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Abstract. The Multi-UAV Cooperative Mission Planning Problem
(MCMPP) is a complex problem which can be represented with a lower
or higher level of complexity. In this paper we present a MCMPP which
is modelled as a Constraint Satisfaction Problem (CSP) with 5 increasing
levels of complexity. Each level adds additional variables and constraints
to the problem. Using previous models, we solve the problem using a
Branch and Bound search designed to minimize the fuel consumption
and number of UAVs employed in the mission, and the results show how
runtime increases as the level of complexity increases in most cases, as
expected, but there are some cases where the opposite happens.

Keywords: Unmanned aircraft systems · Mission planning · Constraint
satisfaction problems · Branch and bound

1 Introduction

Unmanned Aircraft Systems (UAS) have been used in many potential applica-
tions including monitoring coastal frontiers, road traffic, disaster management,
agriculture, etc [6]. Nowadays, Unmanned Air Vehicles(UAVs) are controlled
remotely from Ground Control Stations(GCSs) by humans operators who use
legacy mission planning systems.

Mission planning for UAS deals with the actions that the vehicle must per-
form (loading/dropping a load, taking videos/pictures, etc.), typically over a
time period. These planning problems can be solved using different methods such
as Mixed-Integer Linear Programming (MILP) [14], Simulated Annealing (SA)
[3], Auction Algorithms (AA) [8], etc. Usually, these methods are the best way to
find the optimal solutions but, as the number of restrictions increases, the com-
plexity grows exponentially because it is a NP-hard problem. Therefore, when
the complexity of these models increases, it is quite usual to employ Heuristic
Methods [16].
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In the literature there are some attempts to implement UAS that achieve mis-
sion planning and decision making using Temporal Action Logic (TAL) for reason-
ing about actions and changes [4], Markov Decision Process (MDP) and dynamic
programming algorithms [5], or hybrid Partial-Order Forward-Chaining (POFC)
[7], among others. Other modern approaches formulate the mission planning prob-
lem as a Constraint Satisfaction Problem (CSP) [2], where the tactic mission is
modelled and solved using constraint satisfaction techniques.

This work deals with multiple UAVs that must perform one or more
tasks in different locations. The solution plans obtained should fulfill
all the constraints given by the different components and capabilities of
the UAVs involved. In previous works [11,12] a simple approach of the
Multi-UAV Cooperative Mission Planning Problem (MCMPP) was modelled as
a Constraint Satisfaction Optimization Problem (CSOP) along with and opti-
mization function designed to minimize the fuel cost, the flight time and the
number of UAVs needed, and solved with Branch & Bound (B&B). In this new
work, we will redefine this model using 5 different levels of complexity to analyse
the computational performance of these models when the complexity increases.

The rest of the paper is structured as follows: Section 2 shows basic concepts
and definitions about CSPs. Section 3 describes how a UAV Mission is defined.
Section 4 shows how the MCMPP is modelled as a CSP and the different levels
of complexity to deal with. Section 5 explains the experiments carried out and
the results obtained. Finally, the last section presents the final analysis and
conclusions of this work.

2 Some Basis in Constraint Satisfaction Problems

Any CSP can be defined as a tuple < V,D,C > where:

– A set of variables V = v1, ?, vn.
– For each variable, a finite set Di (its domain) of possible values.
– And a set of constraints (C) restricting the values that variables can simul-

taneously take.

Therearemanystudiedmethods to search forall the solutions inaCSPproblem,
such as Backtracking (BT), Backjumping (BJ) or Forward Checking (FC). These
algorithms are usually combined with other techniques like consistency techniques
(Node Consistency (NC), Arc Consistency (AC) or Path Consistency (PC)) to
modify the CSP ensuring its local consistency conditions.

In most of cases, we have a goal test function that returns a numerical value
(how good the solution is), and this special CSP in which we try to optimize the
solutions is referred as CSOP. The most widely used method for finding optimal
solutions is B&B.

A Temporal Constraint Satisfaction Problem (TCSP) is a particular class
of CSP where variables represent times (time points, time intervals or dura-
tions) and constraints represent sets of allowed temporal relations between them
[15]. Different classes of constraints are characterized by the underlying set of
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Basic Temporal Relations (BTR). Most types of TCSPs can be represented with
Point Algebra (PA), with BTR = {∅, <,=, >,≤,≥, �=, ?}.

In the related literature, Mouhoub [9] proved that on real-time or
Maximal Temporal Constraint Satisfaction Problems(MTCSPs), the best meth-
ods for solving them are Min-Conflicts-Random-Walk (MCRW) in the case of
under-constrained and middle-constrained problems, and Tabu Search (TS) and
Steepest-Descent-Random-Walk (SDRW) in the over-constrained case. He also
developed a temporal model, TemPro [10], which is based on interval algebra,
to translate an application involving temporal information into a CSP.

3 Modelling a UAV Mission Planning

The MCMPP can be defined as a number n of tasks to accomplish for a team
of m UAVs. There exists different kind of tasks, such as exploring a specific
area or search for an object in a zone. These tasks can be carried out thanks
to different sensors available by the UAVs performing the mission. In this app-
roach, we consider several types of sensors: Electro-optical or Infra-red (EO/IR)
cameras, Synthetic Aperture Radar (SAR), Signal Intelligence (SIGINT), etc.
In addition, each task must be performed in a specific geographic area and
in a specific time interval. This time interval could be specified with a start and
end time for the task, or just with the duration of the task, so the start and end
of the task must be computed in the planning.

On the other hand, the vehicles performing the mission has some features
that must be taken into account in order to check if a mission plan is correct:
their initial positions, their initial fuels, their available sensors, and one
or more flight profiles. A vehicle’s flight profile specifies at each moment its
speed, its fuel consumption ratio and its altitude (unless it is a climb or
descend profile).

When a task is assigned a vehicle, it is necessary to compute the departure
time when the vehicle starts moving to the task. In addition, it is necessary to
compute the duration of the path between the departure of the UAV and the
start of the task. Finally, if a task is the last of the tasks assigned to a vehicle,
then we must compute the duration of the return from this last task to the
base (the initial position of the UAV).

In order to compute these durations, it is necessary to know which of the
flight profiles (if there are more than one) of the UAV will be used. A UAV
usually has, at least, three flight profiles: a climb profile, a descend profile
and a route profile. Moreover, given that the flight profile provides the fuel
consumption ratio, it will be possible to compute the fuel consumptions both in
the path and the return. On the other hand, to compute the fuel consumption
in the performance of the task, we must know the flight profile required by the
sensor used in the task performance.

When start and end time of tasks are fixed, it is possible that the time when
a vehicle finishes a task does not meet the time when the vehicle departs for the
next task. In this case, we define this interval of time as the loiter duration for
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the second task. In this situation, the UAV must fly using the minimum cost
flight profile, so the fuel consumption is minimum.

Finally, a mission could have some time and vehicle dependencies between
different tasks. Vehicle dependencies consider if two tasks must be assigned
the same UAV or different UAVs. Moreover, we consider time dependen-
cies given by Allen’s Interval Algebra [1].

4 Proposed CSP Model

Given the assumptions described in Section 3, we can consider several sets of
variables in this kind of problem:

– Assignments (assign) of tasks to UAVs of the MCMPP.
– Orders (order), which define the order in which each UAV performs the

tasks assigned to it. These variables are necessary when start and end times
of tasks are not fixed.

– Path Flight Profiles (fpPath). These variables set the flight profile that the
vehicle must take for the path performance. It is necessary to consider these
variables just in the case that there are several route profiles.

– Return Flight Profiles (fpReturn), similar to the previous set of variables
but for the return performance of each UAV.

– Task Flight Profile (fpTask). These variables set the flight profile that the
vehicle must take to complete the task, which is required by the sensors used.
It is necessary to consider these variables just in the case that the vehicle
performing the task has several sensors that could perform that task.

In addition, it is necessary to define some extra variables that are com-
puted in the propagation phase of the CSP solver. These variables are the time
points (departure, start and end) and durations (durPath, durTask, durLoiter,
durReturn) of the mission, as well as fuel consumptions (fuelPath, fuelTask,
fuelLoiter, fuelReturn);

Now, we define the constraints of the CSP according to the level of complexity
used. In this work, we have defined 5 levels of complexity, each one with a higher
level of constraints.

4.1 CSP Model-1

This first level only uses sensor constraints, which are used to check if a UAV
carries the required sensors to perform a task. Let sensors(u) denote the sensors
available for UAV u, and sensors(t) the sensors that could perform the task t.
The constraint to check it can be modelled as follows:

assign[i] = u ⇒ |sensors(t) ∩ sensors(u)| > 0 (1)

In this level, the only variables that are considered are the assignments.
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4.2 CSP Model-2

Here, we add order and temporal constraints that will check the time consistency
of the model, transforming it into a TCSP. Consequently, this level will consider
the order variables, and also all the secondary variables related to the time points
and durations. We consider that each UAV has just one flight profile that will
be used for the duration computations.

First of all, it is necessary to assure that the value of the order variable is
less than the number of tasks assigned to the UAV performing that task. This
constraint is modelled as Equation 2 shows:

assign[t] = u ⇒ order[t] < � {t ∈ T |assign[t] = u} (2)

and if two tasks are assigned the same UAV, they have different order values:

assign[i] = assign[j] ⇒ order[i] �= order[j] (3)

Then, it is necessary to assure that the start time of the task equals the sum
of the departure time and the duration for the path:

departure[t] + durPath[t] = start[t] (4)

and that end time is the sum of start time and the duration of the task:

start[t] + durTask[t] = end[t] (5)

If tasks have fixed starts and end times, then it is necessary to compute
the duration of the loiter as the difference between the end of a task and the
departure for its consecutive task:

assign[i] = assign[j] ∧ order[i] = order[j] − 1 ⇒ durLoiter[j] = departure[j] − end[i]
(6)

Then, when two tasks are assigned to the same UAV, given their orders, the
end time of the first task must be less or equal than the departure of the second:

assign[i] = assign[j] ∧ order[i] < order[j] ⇒ end[i] ≤ departure[j] (7)

Now, to compute the durations of the paths to the tasks, it is necessary to
compute the distances from the UAV to the task (du→t), between each pair of
consecutive tasks (di→j) and from the last task performed by a UAV to its initial
position (dt→u). Given that these points are represented in geodesic coordinates,
the distance between two points is computed using the Haversine formula with
the latitude and longitude of the points.

With this and the speed vu given by the flight profile of the vehicle, we can
compute the duration of the path for the first task t performed by the vehicle
u as durPath[t] = du→t

vu
. On the other hand, for each pair of consecutive tasks

i and j assigned to the same UAV, the duration of their path is computed as
durPath[j] = di→j

vu
. Finally, we compute the return duration for a UAV u, given

its last planned task t, as durReturn[u] = dt→u

vu
.
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4.3 CSP Model-3

In this level, we will add the fuel constraints, which check the fuel consumption
for each UAV. The variables in this level remain the same as in Level 2.

First of all, in order to compute the fuel consumption in the performance
of each task, it is necessary to know the flight profile required by the sensors
to perform the task. For this, we will consider that all sensors require the same
flight profile, which give us the speed vt and the fuel consumption rate fuelRatet
for the performance of a task t.

With this, we can compute the fuel consumed by the UAV performing the
task as fuelTask[t] = durTask[t] × vt × fuelRatet

On the other hand, the fuel consumed in the path for the first task t performed
by a vehicle u is computed as fuelPath[t] = du→t × fuelRateu. Moreover, the
fuel consumed in the path between two consecutive tasks i and j is computed
as fuelPath[j] = di→j × fuelRateu.

Then, the fuel consumption for the loiter of a task, given that each vehicle
has just one flight profile, is fuelLoiter[t] = durLoiter[t] × vu × fuelRateu.

Finally, we compute the return fuel consumption given the last task t per-
formed by a UAV u as fuelReturn[u] = dt→u × fuelRateu.

With all this, we just have to sum all these fuel consumption values of a UAV
and constraint it to be less than its initial fuel fuelu:

∑

t∈T
assign[t]=u

(fuelPath[t] + fuelTask[t]) + fuelReturn[u] < fuelu (8)

4.4 CSP Model-4

In this level, we will consider that each UAV has four flight profiles: a climb
profile, a descend profile, a minimum consumption profile and a maximum speed
profile. In addition, each of the sensors will have a specific required flight profile,
and not necessarily the same as assumed previously.

With this, all the duration and fuel consumption computations from previous
levels must be recomputed considering the values given by the flight profiles
selected in variables fpPath, fpTask and fpReturn. On the computation of
loiter fuel consumption, we must use the minimum consumption flight profile.

Following this, for the first task t performed by a UAV u, we check if its path
profile must be climb or descend according to its increase or decrease of altitude.
The altitude of the task is given by its task profile, so we have that:

{
altitude(fpTask[t]) − altitude(u) > 0 ⇔ fpPath[t] = u.CLIMB

altitude(fpTask[t]) − altitude(u) < 0 ⇔ fpPath[t] = u.DESCEND
(9)

On the other hand, for each pair of consecutive tasks i and j, a similar
situation must be accomplished:
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{
altitude(fpTask[j]) − altitude(fpTask[i]) > 0 ⇔ fpPath[j] = u.CLIMB

altitude(fpTask[j]) − altitude(fpTask[i]) < 0 ⇔ fpPath[j] = u.DESCEND

(10)

On the other hand, for the return flight profile, given the last task t assigned
to vehicle u, we must check if the return profile of u is climb or descend:

{
altitude(u) − altitude(fpTask[t]) > 0 ⇔ fpReturn[u] = u.CLIMB

altitude(u) − altitude(fpTask[t]) < 0 ⇔ fpReturn[u] = u.DESCEND

(11)

4.5 CSP Model-5

Finally, in this level, we will add all the time and vehicle dependencies mentioned
in Section 3. The time dependency constraints, for each pair of tasks i and j and
according to Allen’s Interval Algebra, are as follow:

i precedes j ⇒ end[i] ≤ start[j] (12)

i meets j ⇒ end[i] = start[j] (13)

i overlaps j ⇒

⎧
⎪⎨

⎪⎩

start[i] ≤ start[j]
end[i] ≥ start[j]
end[i] ≤ end[j]

(14)

i starts j ⇒
{

start[i] = start[j]
end[i] ≤ end[j]

(15)

i during j ⇒
{

start[i] ≥ start[j]
end[i] ≤ end[j]

(16)

i finishes j ⇒
{

start[i] ≥ start[j]
end[i] = end[j]

(17)

i equals j ⇒
{

start[i] = start[j]
end[i] = end[j]

(18)

On the other hand, the vehicle dependencies implies that some task must be
performed by the same vehicle or by different vehicles:

sameUAV (i, j) ⇒ assign[i] = assign[j] (19)

differentUAV (i, j) ⇒ assign[i] �= assign[j] (20)
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4.6 Optimization Variables

Now, in order to solve the CSOP with B&B, we must define the optimization
function that this algorithm will use. Following a previous work [12], we will
consider three variables: the number of vehicles, the fuel consumption and the
flight time. To reckon them, first we compute the fuel consumed by each vehicle:

fuelConsumed[u] =
∑
t∈T

assign[t]=u

(fuelPath[t] + fuelTask[t] + fuelLoiter[t]) + fuelReturn[u]

(21)

and the flight time of each vehicle:

flightT ime[u] =
∑

t∈T
assign[t]=u

(durPath[t] + durTask[t] + durLoiter[t]) + durReturn[u]

(22)
And then just compute the objective variables as:

– The number ofUAVs used in themission: Nuavs = � {u ∈ U |∃t ∈ T assign[t] = u}.
– The total flight time of the mission: flightT imeCost =

∑
u∈U flightT ime[u].

– The total fuel consumption of the mission: fuelCost =
∑

u∈U fuelConsumed[u].

Now, according to the previous work [12], we will use the function 0.9 ×
Nuavs + 0.1 × fuelCost with these problems. Nevertheless, in levels 1 and 2 it
is not possible to use this function because fuelCost is not defined. Instead, we
will use Nuavs for Level 1, and 0.9 × Nuavs + 0.1 × flightT imeCost for Level 2.

5 Experimental Results

The Mission Scenario used in this experiment consists of 8 tasks and 5 UAVs
scattered throughout the map. Each UAV has different sensors and each task can
be performed by different sets of sensors, so there are several possible solutions.

On the other hand, we have fixed four time dependencies (of type <, m, f ,
and =), and a same UAV vehicle dependency. Each UAV has been set with a
different amount of initial fuel and all departs from ground (altitude 0).

Now, we run B&B with this MCMPP modelled as a CSP using Gecode [13] on
a AMD FX-8350 8-Core 4.00GHz and 8GB RAM. For each level of complexity,
we run the problem twice: first, with start and end times of all tasks fixed, and
then with these unfixed, obtaining the run times shown in Table 1.

From the first three levels of complexity, we can see that adding complexity
implies adding some secondary variables (times and fuel) that are not iterated,
but computed in the propagation phase of the CSP. This is, the propagation
phase takes more time due to the variables that must be computed. On the
other hand, we can see that when times are unfixed, B&B takes much more time
to find the optimal solution, because of the order variables that must be iterated.
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Table 1. Runtime of the MCMPP of 8 tasks and 5 UAVs, with each of the 5 levels of
complexity and task times fixed and unfixed.

Level of complexity Fixed Times Unfixed Times

Level 1 20ms -

Level 2 830ms 11.34s

Level 3 1.03s 1min 50s

Level 4 55.32s 6h 52min 45s

Level 5 56.05s 4h 29min 23s

Looking now at levels 4 and 5, we can see that they take much more time
than the three first levels, because of the flight profile variables to iterate. The
most interesting fact here is that, for unfixed times, level 4 spends more time
than level 5. This is because adding the dependency constraints makes a little
more propagation time but highly reduce the space of solutions, making it easier
to the algorithm to found the optimal solution.

6 Conclusions

In this paper, we have presented a CSP model for Multi-UAV Mission Planning.
The presented approach defines missions as a set of tasks to be performed by
several UAVs with some capabilities. The problem is modelled according to 5
levels of complexity: Level 1 considers sensor constraints, Level 2 adds temporal
constraints, Level 3 adds fuel constraints, Level 4 considers flight profiles and
Level 5 add temporal and vehicle dependencies.

Using B&B, we have performed an experiment in order to measure the scala-
bility of the problem in the different levels of complexity. We have considered two
possible approaches: with fixed times and with unfixed times. Results showed
that adding constraints that imply considering new variables always increase
the runtime; but constraints that do not add new variables, as the dependency
constraint added in Level 5, do not increase the runtime, but may decrease it.

In order to make these results more trustful, in further works we
will consider different scenarios and topologies, so a more general conclu-
sion would be obtained. Furthermore, we will use a Multiobjective model,
such as the Multi-Objective Evolutionary Algorithm (MOEA), to find the
Pareto Optimal Frontier (POF) of the optimization variables, instead of using a
percentages function.
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