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Abstract—Run-time analysis is a powerful tool to analyze
algorithms. It is focused on studying the time required by an
algorithm to find a solution, the expected run-time, which is
one of the most relevant algorithm attributes. Previous research
has associated the expected run-time in GP with the lognormal
distribution. In this paper we provide additional evidence in
that regard and show how the algorithm parametrization may
change the resulting run-time distribution. In particular, we
explore the influence of the selective pressure on the run-time
distribution in tree-based GP, finding that, at least in two problem
instances, the lack of selective pressure generates an expected
run-time distribution well described by the Weibull probability
distribution.

I. I NTRODUCTION

The run-time has a direct impact on the algorithm utility.
Understanding it may conduct to better practices [1] and
clues about the answer to some important theoretical open
questions [2], [3]. In order to understand the run-time behavior
of algorithms, it is important to characterize its statistical
properties, and in particular to find a probability distribution
able to model it. Knowing some run-time statistical properties
opens powerful parametric statistics to the study of the run-
time, enhancing, the often criticized [4], experimental methods
in GP, among other applications.

A method widely used to study the run-time is to plot
it. To the authors’ knowledge, Feoet al. [5] introduced this
method, and they were followed by several authors, that, with
different names and shapes, used that tool. The term that is
probably most widely used is Run-Time Distribution, which is
the cumulative distribution function of the run-time [6]; in case
that time is measured in an architecture-independent way the
term Run-Length Distribution is preferred [7]. Some authors
prefer constraining the run-time analysis to those runs that
found a solution, using different terms to name it, such as
expected run-time [3] or time-to-target [1] or generation-to-
success [8].

There is a large literature devoted to the experimental
analysis of run-time distributions in random search algorithms.

Several studies conclude that the run-time follows an expo-
nential or shifted exponential distribution in a wide rangeof
algorithms (backtracking, GA, ACO, WSAT, GWSAT with
tabu-lists, TMCH, WMCG or ILS) applied to a variety of
problems (TSP, 3SAT, SAT or CSP) [1], [9], [10]. However,
other studies points to more complex distributions. In [11],
Chiarandiniet al. found that the run-time fits well a Weibull
distribution in ILS, ACO, Random Restart Local Search and
two variants of SA applied to the course timetabling problem.
However, they report that in some hard problem instances the
run-time follows a shifted exponential.

The presence of the exponential distribution is so general
that has induced some software packages to only consider
this distribution [12], or to conjecture that this distribution is
intrinsic to stochastic local search optimization [7]. However,
Hooset al. they observed that the run-time distribution may
depend on some factors, such as the problem difficulty or
parameter settings. To be more specific, optimal parameter
settings induced some algorithms run-times to follow an
exponential distribution, while suboptimal parameters generate
a Weibull [13], [14], [7]. Similarly, they found that easy prob-
lems deviate the run-time distribution from the exponential,
even when the tail remains as exponential [15].

Curiosly, despite the interest of run-time analysis, thereis
little empirical work done in the context of classical Koza’s
style GP. In [8], we proposed a model of success probability
based on its decomposition on two components, the expected
run-time distribution and the success rate. In order to givean
analytic model, we performed a run-time analysis of some
common GP problems, finding that the expected run-time,
measured in generations, fits well a lognormal distribution.

This paper extends [8] and addresses a new research ques-
tion: The relationship between the expected run-time distri-
bution and the lack of selective pressure. In contrast to [8]
, this study includes two new problem instances to study
their run-time lognormality in a standard parameter setting and
analyzes the influence of the selective pressure to the expected
run-time distribution. The results draw a richer -and more



complex- scenario. Under the light of the problem instances
considered, the lognormal distribution describes well therun-
time distribution in usual conditions, but the lack of selective
pressure makes the Weibull distribution a better model. From
a practical perspective, understanding the underlying run-time
distribution might help to determine the optimal restarting
point of an evolutionary algorithm.

The paper is structured as follows. First, we briefly in-
troduce the experimental setup used in the study. Then, in
section three we analyze the run-time distribution of six well-
known problems in GP. In section four, we analyze the run-
time distribution in absence of selective pressure. To complete
the picture, section five studies the run-time distributionwith
a low selective pressure. Finally, some conclusions and future
work are outlined.

II. EXPERIMENTAL SETUP

We only need (to a first approximation) to execute the
algorithm on some problems and assess whether their expected
run-time follows any known distribution. We consider some
classical problem instances widely used by the GP literature
belonging to four problem classes: The artificial ant, k-
multiplexer, even k-parity and regression without Ephemeral
Random Constants (ERC)1. Two instances of each binary
problem (parity and multiplexer) were considered;6 and 11
lines were used in the multiplexer, while the parity problem
used4 and5 lines. The trail used in the artificial ant problem
was Santa Fe, as described by Koza. We should mention that
the optimal solution of all these problems is known, with the
exception of the regression. In this case we have set a fitness
limit.

In total six problem instances were used in the experiment,
all of them implemented in the well tested ECJ framework.
There are founded doubts about the convenience of those
problems [16], however, we consider that they are enough
given the exploratory nature of this study. Given the limited
scope of the problems, any generalization of the results should
be taken with caution.

In all the cases we used the implementation and default
parameter settings found in ECJ v18, with minor exceptions.
The population size and cut off number of generations were
modified to tune the algorithm according to the problem
difficulty, for instance, 5-parity required4, 000 individuals
in the population and800 generations to find solutions. The
number of timesteps used in the artificial ant was increased
to 600. A summary of the settings used in this experiment is
shown in Table I.

The algorithm was run a number of times (n) in each
problem to obtain a sufficient number of successful runs (k).
Some problems were run a huge number of times,100, 000,
because they were reused from previous publications where
that number of runs was needed. Other problem instances were
run fewer times, enough for the purpose of this study. The

1All the code, configuration files, scripts and datasets needed to reproduce
the experiments reported in this paper are published on http://atc1.aut.uah.es/
∼david/cec2013/.

number of runs,n, was chosen depending on the computa-
tional resources needed by the experiment, which is strongly
correlated with the population size and problem difficulty.
The number of runs and number of successful runs used in
the preliminary experiment is shown in Table II. In order to
provide complete reporting on the run-time, the table includes
the observed success rate (p̂) and its confidence interval
computed with Wilson andα = .05 [18].

III. RUN-TIME DISTRIBUTION OF SOME CLASSICALGP
PROBLEMS

This section briefly studies which statistical distribution
fits the run-time. We only consider the expected run-time,
and therefore only successful runs are included in the study.
We also should mention that the number of generations is a
discrete measure, but it will be approximated using continuous
distributions in order to compare the results with the literature
more easily.

The unit used to measure time is the generation, and since
each generation involves a constant number of evaluations,
the results can be extrapolated to other measures such as the
number of evaluations. Let us denote the expected run-time
measured in generations asτ , the run-time in evaluations as
T , and the population size asλ, thenτ andT are related as
λ(τ − 1) ≤ T ≤ λτ [3].

The resulting run-time distribution was compared to several
distributions (normal, lognormal, Weibull and logistic),finding
that the closest one is the lognormal [8], which can be
converted into normal just by taking logarithms. With this
relationship in mind, we tested the normality of the six
empirical distributions by representing the quantile plots of
their logarithm, the result is in Fig. 1. As we could expect, the
quantile plots show that in general the normal distributionfits
well the log(run-time). In the case of the regression problem
the fit is excellent, little worse in the 6-multiplexer, regression
and the artificial ant. The exception is the two hard Boolean
problems (5-Parity and 11-Multiplexer), whose tails clearly
deviate from the normal distribution.

With some limitations (hard Boolean problems), the log-
normal distribution seems a reasonable choice to model the
expected run-time at least in these 6 problems. Additionally, it
has an interesting property: Lognormal data can be converted
easily into normal, and then all the well-known parametric
statistics can be used. At this point, a natural question that
raises is to which extent the lognormality is a general property
of run-time in GP.

IV. D ISTRIBUTION OF THE EXPECTED RUN-TIME WITH

RANDOM SELECTION

Even though the problem instances so far studied have
shown lognormal expected run-times, the generality of this
observation is unclear. In order to assess the limits of the run-
time lognormality we have carried out an experiment with
an extreme parameter setting. Theoretical studies in simple
EAs have shown that the balance between mutation and
selection has a direct impact on the run-time behavior of the



TABLE I
TABLEAU FOR THE PROBLEM: ARTIFICIAL ANT WITH THE SANTA FE TRAIL , 6-MULTIPLEXER, 11-MULTIPLEXER, EVEN 4-PARITY, EVEN 5-PARITY AND

SYMBOLIC REGRESSION WITHOUTERC.

Parameter Artificial ant 6/11-multiplexer 4/5-parity Regression

Population 500 500 4,000 500

Generations 50 50 800 50

Tournament size 7 7 7 7

Success fit.=0 fit.=0 fit.=0 fit.≤0.001

Observations Timesteps=600 Even parity No ERC

Santa Fe trail y = x4 + x3 + x2 + x

x ∈ [−1, 1]

TABLE II
ESTIMATION OF THE DIFFICULTY TO FIND A SOLUTION. IT REPORTS THE NUMBER OF RUNS(n), NUMBER OF SUCCESSFUL RUNS(k), ESTIMATION OF

SUCCESS RATÊp AND WILSON [17] CONFIDENCE INTERVALS OF THE SUCCESS RATE WITHα = 0.95, LOWER(Lp) AND UPPER(Up) VALUES. INTERVALS

WERE COMPUTED USINGR’S BINOM PACKAGE.

Artificial ant 6-Multiplexer 11-Multiplexer 4-Parity 5-Parity Regression

n 100,000 100,000 1,000 400 5,000 100,000

k 13.168 95.629 333 299 305 29,462

p̂ 0.132 0.956 0.333 0.747 0.061 0.295

Lp 0.1296 0.9550 0.3045 0.7027 0.0547 0.2918

Up 0.1338 0.9575 0.3628 0.7876 0.0680 0.2975
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Fig. 1. Quantile plots of the logarithm of the expected run-time, measured in generations, against samples drawn from normaldistributions.

algorithm [3]. So, we eliminated the selective pressure to force
an extreme behavior and in this way test the lognormality of
the run-time.

We carried out a new experiment using the same problem
instances and parameter settings, but reducing the tournament
size to one to eliminate the selective pressure. As a conse-

quence, the search is random and therefore the difficulty of
finding a solution went up dramatically. We only got successful
runs in two out of the six problem instances, even when the
limit of generations was increased to1, 000. Table III shows
the estimate of the success rate with Wilson intervals, number
of trials and successful runs.
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Fig. 2. Histogram of the measured run-time of two problem instances solved by GP without selective pressure (left) and quantile plots comparing data and
samples drawn from a Weibull distribution (right).

TABLE III
SOME EXPERIMENTAL PARAMETERS AND ESTIMATION OF THE SUCCESS

RATE IN ABSENCE OF SELECTIVE PRESSURE. IT REPORTS THE NUMBER OF

RUNS (n), NUMBER OF SUCCESSFUL RUNS(k), ESTIMATION OF THE

SUCCESS RATÊp AND WILSON INTERVALS WITH α = 0.05, LOWER(Lp)
AND UPPER(Up) VALUES.

Artificial ant Regression

n 5,000 5,000

k 1,185 591

p̂ 0.237 0.118

Lp 0.225 0.109

Up 0.249 0.127

The histograms of the run-times are depicted in Fig 2 (left).
Since there is no selective pressure, the population is not
pushed to good regions of the search space, making the search
random (however, with memory due to code bloat). As a result,
the efficiency of the algorithm for finding a solution has been
reduced notably, and indeed only two out of the six problems
instances found enough solutions to be significant. Hence,
only two problems are reported in this section, the artificial

ant and the regression. In addition, the expected run-time has
been dramatically increased, problems that required at most 50
generations with tournament size7, without selective pressure
require a large number of generations to find the solution, if
it is found.

Perhaps the most interesting fact shown in the Fig 2 (left)
is the shape of the histogram. It overlaps the probability
density distributions fitted using maximum-likelihood to the
histograms. Surprisingly, the lognormal distribution fails mod-
elling the expected run-time; it contains a pronounced peak
and a rapid decay, but experimental expected run-times show
a smoother shape. In fact, a new distribution able to fit data
pretty well appear into scene - the Weibul distribution. This
observation is strongly supported by the quantile plots depicted
in Fig. 2 (right); the straight line in the plots suggest thatthe
expected run-time follows a Weibull distribution.

To avoid subjectivity in analysis, we performed rigor-
ous Kolgomorov-Smirnov (K-S) and Anderson-Darling (A-D)
goodness of fit tests. Table IV summarizes the results reporting
the Weibull parameters (k,λ) estimated using maximum-
likelihood and the tests statistics, D and A. The tests were



TABLE IV
KOLMOGOROV-SMIRNOV (K-S) AND ANDERSON-DARLING (A-D)

GOODNESS OF FIT TESTS. THEY TEST WHETHER THE EXPECTED RUN-TIME

WITH TOURNAMENT SIZE ONE FOLLOWS AWEIBULL DISTRIBUTION . THE

TABLE REPORTS THE ESTIMATED PARAMETERS OF THE DISTRIBUTION(K ,
λ), THE K-S STATISTIC (D) AND THE A-D STATISTIC (A). THE ASTERISK

(*) DENOTES THAT A TEST PASSED WITHα = 0.05.

k̂ λ̂ D A

Artificial ant 1.43 355 0.039* 0.267*

Regression 1.42 393 0.034* 0.281*

conducted on150 random samples. Tests that could not reject
the null hypothesis are marked in bold letters and asterisk.
K-S and A-D tests did not found evidence to reject that the
Weibull distribution fits the expected run-times withα = 0.05.

The Weibull distribution has some interesting properties that
it is worth to analyze briefly. The interpretation made by Hoos
and Sẗutzle in [15] in the context of Stochastic Local Search
might be applied here with some care. They suggested that
the Weibull distribution in hard problems models the initial
search phase, which is not present in easy problems. This
conjecture cannot be directly applied to GP because of the
obvious differences in the algorithms, but can be adapted.

The Weibull distribution asymptotically approximates the
exponential distribution. In fact, Weibull is a generalization
of the exponential distribution. Given enough time, if the
algorithm without selective pressure does not find a solution,
its expected run-time would become an exponential random
variable. And this is interesting, because the exponentialdis-
tribution is the only continuous memoryless distribution.This
is an observation with practical consequences, given that the
algorithm has no memory, it cannot benefit from restarts [11].
This observation makes sense in a scenario without selective
pressure, where population is selected at random.

The Weibull distribution suggests an exponential -
memoryless- behavior in large expected run-times, but this
interpretation does not hold in low (non-exponential) run-
times. In other words, when the run begins, it has memory
but later it tends to be memoryless. The presence of memory
cannot be explained by the selection, but there is one GP
characteristic that introduces memory in the algorithm even
in absence of selective pressure: The size of the trees changes
along the run even when there is no selective pressure. This
is an issue that probably deserves some future research.

V. RUN-TIME DISTRIBUTION WITH LOW SELECTIVE

PRESSURE

In this section we examinate the run-time with the tourna-
ment size set to two. The lack of selective pressure determines
the expected run-time distribution, at least, in two problems.
We found that under usual circumstances the expected run-
time follows a lognormal distribution, but it can change
removing the selective pressure. It is worth to question what
happens in an intermediate scenario with selective pressure,
but much lower than in the initial experiment. Hence, the
tournament size was set to two.

We used the same parameter settings shown in Table I,
with two differences: The tournament size values two and the
number of generations was modulated according the difficulty
of finding a solution. The number of runs were500 in almost
all the problems, with the exception of the 11-multiplexer due
to the computational cost. Table V summarizes the number of
runs, successful runs and success rate estimates.

We verified whether the expected run-time with low selec-
tive pressure fit better a lognormal or Weibull distribution. To
this end, Fig. 3 plots the histogram of the expected run-times
overlapping the lognormal and Weibull distributions. As in
previous experiments, we fit the parameters with maximum-
likelihood. Interestingly, the figure clearly shows that inthis
case the lognormal distribution fits data better than the Weibull
distribution in the six problem instances.

Fig. 3 suggests that, in general, the lognormal distribution
fits well the expected run-time with tournament size two. There
are problems where the fit is almost perfect (6-multiplexer),
while in others the fit is worse (11-multiplexer and 4-parity).
In any case, the lognormal distribution fits our data better than
the Weibull. Therefore, in presence of selective pressure,even
if it is small, the lognormal distribution is a better alternative
to model the expected run-time than the Weibull in the six
problem instances covered in this study.

Finally, we compare the resulting run-time distributions
obtained with different tournament sizes. Fig. 4 contains the
kernel plots of the algorithms of the expected run-times.
Using the algorithms instead of the raw run-times eases the
comparison and let the visual identification of lognormal
distributions, which must appear as normal.

The plot in Fig. 4 reveals some interesting facts. High
selective pressure have a positive effect from the run-time
perspective, using a tournament size of seven reduces the run-
time mean in all the studied cases. However, this observation
should be taken with care; we should not conclude that high
selective pressure enhance the search process as a general rule.

The shape of the distributions in Fig. 4 suggests that the
run-time distribution without selective pressure has a different
nature. With some exceptions, almost the only difference
between the distributions with tournament size two and seven
is the mean, both generate similar variances and shapes.
However, when the tournament size equals one, the resulting
distributions clearly have negative skews, which is incompati-
ble with a normal nature. This gives credence to the fact that,
at least in two problems, the lack of selective pressure affects
the run-time distribution.

VI. CONCLUSIONS AND FUTURE WORK

This paper is an attempt to increase our understanding of
GP by using run-time analysis. In particular, we have studied
how the lack of selective pressure affects the time that the
algorithm consumes to find a solution -i.e., the expected run-
time. We adopted an experimental perspective, trying to find
a statistical distribution able to model the expected run-time.

In common parameter settings, the lognormal distribution
fits quite well the expected run-time in the six GP problems



TABLE V
SOME EXPERIMENTAL PARAMETERS AND ESTIMATE OF THE SUCCESS RATE TO FIND A SOLUTION WITH LOW SELECTIVE PRESSURE(TOURNAMENT SIZE

TWO). IT REPORTS THE NUMBER OF RUNS(n), NUMBER OF SUCCESSFUL RUNS(k), ESTIMATION OF THE SUCCESS RATÊp AND WILSON INTERVALS

WITH α = 0.95, LOWER(Lp) AND UPPER(Up) VALUES.

Artificial ant 6-Multiplexer 11-Multiplexer 4-Parity 5-Parity Regression

n 500 500 200 500 500 500

k 51 450 63 258 262 314

p̂ 0.102 0.9 0.315 0.516 0.524 0.628

Lp 0.078 0.871 0.255 0.472 0.480 0.585

Up 0.132 0.923 0.382 0.560 0.567 0.669
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Fig. 3. Histogram of the expected runtime generated with a tournament size of 2. Lognormal (blue) and Weibull (red) distributions fitted with maximum-
likelihood are overlapped.

we have studied. More interestingly, if the selective pressure
is eliminated by means of setting the tournament size to one,
the run-time distribution fits well a Weibull distribution.We
should stress that this result applies to the two problems where
we found solutions, and therefore any generalization should be
done with care.

In any case, experiments shown in this paper, and exper-
iments reported in related literature have shown a complex
picture, where some statistical distributions are involved inter-
acting with the parameters settings. Several questions remain
open; probably the most important one is to understand why
the run-time distribution is affected by the lack of selective
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Fig. 4. Kernel density estimates of the logarithm of the expected run-times with different tournament sizes: one (no selective pressure) in blue, two in red
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pressure. Curiosly, the distributions that use to appear inrun-
time analysis, exponential, lognormal and Weibull distributions
are the three key distributions in Reliability Theory to model
the survival time of components, in contrast, for instance,to
human creations modelling [19]. It is known that the failure
rate determines the distribution of the life time. Ironically,
identifying failure with success in GP could be a first step to
explain the expected run-time distributions. Other directions to
explore would be to study the connection between the selective
pressure and the hardness of the problem.
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[11] M. Chiarandini and T. Stützle, “Experimental evaluation of course
timetabling algorithms,” Intellectics Group, Computer Science Depart-
ment, Darmstadt University of Technology, Darmstadt, Germany,Tech.
Rep. AIDA-02-05, April 2002.

[12] R. M. Aiex, M. G. C. Resende, and C. C. Ribeiro, “TTT
plots: a perl program to create time-to-target plots,”Optimization
Letters, vol. 1, no. 4, pp. 355–366, Oct. 2006. [Online]. Available:
http://link.springer.com/article/10.1007/s11590-006-0031-4
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