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Abstract—Run-time analysis is a powerful tool to analyze Several studies conclude that the run-time follows an expo-
algorithms. It is focused on studying the time required by an nential or shifted exponential distribution in a wide ranafe
algorithm to find a solution, the expected run-time, which is algorithms (backtracking, GA, ACO, WSAT, GWSAT with

one of the most relevant algorithm attributes. Previous research . . .
has associated the expected run-time in GP with the lognormal tabu-lists, TMCH, WMCG or ILS) applied to a variety of

distribution. In this paper we provide additional evidence in Problems (TSP, 3SAT, SAT or CSP) [1], [9], [10]. However,
that regard and show how the algorithm parametrization may other studies points to more complex distributions. In [11]
change the resulting run-time distribution. In particular, we  Chijarandiniet al. found that the run-time fits well a Weibull
explore the influence of the selective pressure on the run-time gigtribytion in ILS, ACO, Random Restart Local Search and
distribution in tree-based GP, finding that, at least in two problem . ’ ! . .
instances, the lack of selective pressure generates an expelt:tet\’v0 variants of SA apphed. to the course tlmetabll_ng problem
run-time distribution well described by the Weibull probability ~ However, they report that in some hard problem instances the
distribution. run-time follows a shifted exponential.
The presence of the exponential distribution is so general
|. INTRODUCTION that has induced some software packages to only consider
this distribution [12], or to conjecture that this distritmn is
The run-time has a direct impact on the algorithm utilityintrinsic to stochastic local search optimization [7]. Hewer,
Understanding it may conduct to better practices [1] andooset al. they observed that the run-time distribution may
clues about the answer to some important theoretical opgépend on some factors, such as the problem difficulty or
questions [2], [3]. In order to understand the run-time b@a parameter settings. To be more specific, optimal parameter
of algorithms, it is important to characterize its statisli settings induced some algorithms run-times to follow an
properties, and in particular to find a probability disttibn  exponential distribution, while suboptimal parametensegate
able to model it. Knowing some run-time statistical pro@art a Weibull [13], [14], [7]. Similarly, they found that easyqir-
opens powerful parametric statistics to the study of the rugms deviate the run-time distribution from the exponéntia
time, enhancing, the often criticized [4], experimentatmoels even when the tail remains as exponential [15].
in GP, among other applications. Curiosly, despite the interest of run-time analysis, thisre
A method widely used to study the run-time is to plolittle empirical work done in the context of classical Koza’
it. To the authors’ knowledge, Feet al. [S] introduced this style GP. In [8], we proposed a model of success probability
method, and they were followed by several authors, thah wibased on its decomposition on two components, the expected
different names and shapes, used that tool. The term thatus-time distribution and the success rate. In order to give
probably most widely used is Run-Time Distribution, whish ianalytic model, we performed a run-time analysis of some
the cumulative distribution function of the run-time [6};éase common GP problems, finding that the expected run-time,
that time is measured in an architecture-independent way theasured in generations, fits well a lognormal distribution
term Run-Length Distribution is preferred [7]. Some author This paper extends [8] and addresses a new research ques-
prefer constraining the run-time analysis to those rung théon: The relationship between the expected run-time idistr
found a solution, using different terms to name it, such #ition and the lack of selective pressure. In contrast to [8]
expected run-time [3] or time-to-target [1] or generation- , this study includes two new problem instances to study
success [8]. their run-time lognormality in a standard parameter sgttind
There is a large literature devoted to the experimentahalyzes the influence of the selective pressure to the &gec
analysis of run-time distributions in random search alpons. run-time distribution. The results draw a richer -and more



complex- scenario. Under the light of the problem instancesimber of runsn, was chosen depending on the computa-
considered, the lognormal distribution describes wellrive  tional resources needed by the experiment, which is styongl
time distribution in usual conditions, but the lack of sélee correlated with the population size and problem difficulty.
pressure makes the Weibull distribution a better modelnFroThe number of runs and number of successful runs used in
a practical perspective, understanding the underlyingtima the preliminary experiment is shown in Table Il. In order to
distribution might help to determine the optimal restaytinprovide complete reporting on the run-time, the table ideki
point of an evolutionary algorithm. the observed success ratg) (and its confidence interval

The paper is structured as follows. First, we briefly ineomputed with Wilson and. = .05 [18].
troduce the experimental setup used in the study. Then, in
section three we analyze the run-time distribution of siXiwe Ill. RUN-TIME DISTRIBUTION OF SOME CLASSICALGP
known problems in GP. In section four, we analyze the run- PROBLEMS
time distribution in absence of selective pressure. To deteap  This section briefly studies which statistical distributio
the picture, section five studies the run-time distributrdth ~ fits the run-time. We only consider the expected run-time,
a low selective pressure. Finally, some conclusions anddut and therefore only successful runs are included in the study
work are outlined. We also should mention that the number of generations is a
discrete measure, but it will be approximated using comtirsu
distributions in order to compare the results with the dtare

We only need (to a first approximation) to execute thgore easily.
algorithm on some problems and assess whether their expecteThe unit used to measure time is the generation, and since
run-time follows any known distribution. We consider somgach generation involves a constant number of evaluations,
classical problem instances widely used by the GP liteeatuhe results can be extrapolated to other measures such as the
belonging to four problem classes: The artificial ant, Khnumber of evaluations. Let us denote the expected run-time
multiplexer, even k-parity and regression without Ephehermeasured in generations asthe run-time in evaluations as
Random Constants (ERE)Two instances of each binaryT, and the population size as thenr and T are related as
problem (parity and multiplexer) were consider&édand 11 Mr—1)<T <A [3]
lines were used in the multiplexer, while the parity problem The resulting run-time distribution was compared to severa
used4 and5 lines. The trail used in the artificial ant problemyjstributions (normal, lognormal, Weibull and logistiéjding
was Santa Fe, as described by Koza. We should mention gt the closest one is the lognormal [8], which can be
the optimal solution of all these problems is known, with thgonverted into normal just by taking logarithms. With this
exception of the regression. In this case we have set a fithesgtionship in mind, we tested the normality of the six
limit. empirical distributions by representing the quantile lof

In total six problem instances were used in the experimegfieir logarithm, the result is in Fig. 1. As we could expebg t
all of them implemented in the well tested ECJ frameworlguantile plots show that in general the normal distribufies
There are founded doubts about the convenience of thQﬁ@” the |Og(run_time)_ In the case of the regression pmb|e
problems [16], however, we consider that they are enouge fit is excellent, little worse in the 6-multiplexer, regsion
given the exploratory nature of this study. Given the limiteand the artificial ant. The exception is the two hard Boolean
scope of the problems, any generalization of the resultsldhoproblems (5-Parity and 11-Multiplexer), whose tails chear
be taken with caution. deviate from the normal distribution.

In all the cases we used the implementation and default\Nn:h some limitations (hard Boolean prob]ems), the |0g_
parameter settings found in ECJ v18, with minor exceptiongermal distribution seems a reasonable choice to model the
The population size and cut off number of generations wegkpected run-time at least in these 6 problems. Additignall
modified to tune the algorithm according to the problerRas an interesting property: Lognormal data can be corverte
difficulty, for instance, 5-parity required, 000 individuals easily into normal, and then all the well-known parametric
in the population an@00 generations to find solutions. Thestatistics can be used. At this point, a natural questioh tha

number of timesteps used in the artificial ant was increasgglses is to which extent the lognormality is a general priype
to 600. A summary of the settings used in this experiment g run-time in GP.

shown in Table I.
The algorithm was run a number of times)(in each IV. DISTRIBUTION OF THE EXPECTED RUNTIME WITH
problem to obtain a sufficient number of successful ru)s ( RANDOM SELECTION

Some problems were run a huge number of times, 000, Even though the problem instances so far studied have
because they were reused from previous publications whefown lognormal expected run-times, the generality of this
that number of runs was needed. Other problem instances Wghgervation is unclear. In order to assess the limits of tine r
run fewer times, enough for the purpose of this study. Thgne lognormality we have carried out an experiment with
. _ L _ an extreme parameter setting. Theoretical studies in simpl
All the code, configuration files, scripts and datasets nédeeproduce h h h he bal b . d
the experiments reported in this paper are published on/faiiit aut.uah.ess EAS have shown that the balance between mutation an
~david/cec2013/. selection has a direct impact on the run-time behavior of the

Il. EXPERIMENTAL SETUP



TABLE |
TABLEAU FOR THE PROBLEM ARTIFICIAL ANT WITH THE SANTA FE TRAIL, 6-MULTIPLEXER, 11-MULTIPLEXER, EVEN 4-PARITY, EVEN 5-PARITY AND
SYMBOLIC REGRESSION WITHOUTERC.

Parameter H Artificial ant 6/11-multiplexer | 4/5-parity Regression
Population 500 500 4,000 500
Generations 50 50 800 50
Tournament size| 7 7 7 7
Success fit.=0 fit.=0 fit.=0 fit. <0.001
Observations || Timesteps§00 Even parity No ERC
Santa Fe trail y=z*4+23 4224z
z € [-1,1]
TABLE I

ESTIMATION OF THE DIFFICULTY TO FIND A SOLUTION. IT REPORTS THE NUMBER OF RUN$n), NUMBER OF SUCCESSFUL RUN$k), ESTIMATION OF
SUCCESS RATE) AND WILSON [17] CONFIDENCE INTERVALS OF THE SUCCESS RATE WITide = 0.95, LOWER(L;) AND UPPER(U)) VALUES. INTERVALS
WERE COMPUTED USINGR’S Bl NOM PACKAGE.

’ H Artificial ant 6-Multiplexer | 11-Multiplexer \ 4-Parity \ 5-Parity \ Regression‘

n 100,000 100,000 1,000 400 5,000 100,000
k 13.168 95.629 333 299 305 29,462
P 0.132 0.956 0.333 0.747 0.061 0.295

Ly 0.1296 0.9550 0.3045 0.7027 0.0547 0.2918
Up 0.1338 0.9575 0.3628 0.7876 0.0680 0.2975

1 1 1 1 1 1 1 1
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Fig. 1. Quantile plots of the logarithm of the expected rimnet measured in generations, against samples drawn from ndist@butions.

algorithm [3]. So, we eliminated the selective pressurotod quence, the search is random and therefore the difficulty of
an extreme behavior and in this way test the lognormality &ifding a solution went up dramatically. We only got succelssf
the run-time. runs in two out of the six problem instances, even when the
limit of generations was increased 19000. Table Il shows

. X . &HE estimate of the success rate with Wilson intervals, reimb
instances and parameter settings, but reducing the to@mam ¢ i~ 1s and successful runs

size to one to eliminate the selective pressure. As a conse-
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Fig. 2. Histogram of the measured run-time of two problem imsta solved by GP without selective pressure (left) and tijagvlots comparing data and
samples drawn from a Weibull distribution (right).

TABLE Il . . .
SOME EXPERIMENTAL PARAMETERS AND ESTIMATION OF THE success ant and the regression. In addition, the expected run-tiase h

RATE IN ABSENCE OF SELECTIVE PRESSURHT REPORTS THE NUMBER OF  been dramatically increased, problems that required at &ios

RUNS (n), NUMBER OF SUCCESSFUL RUNk), ESTIMATION OF THE generations with tournament sizewithout selective pressure
SUCCESS RATE) AND WILSON INTERVALS WITH av = 0.05, LOWER(Lyp) . . . . .
AND UPPER(U,) VALUES. require a large number of generations to find the solution, if
it is found.
| [[ Artificial ant_| Regression | Perhaps the most interesting fact shown in the Fig 2 (left)
n 5,000 5,000 is the shape of the histogram. It overlaps the probability
k 1,185 591 density distributions fitted using maximum-likelihood toet
P 0.237 0.118 histograms. Surprisingly, the lognormal distributioridanod-
Ly 0.225 0.109 elling the expected run-time; it contains a pronounced peak
Up 0.249 0.127 and a rapid decay, but experimental expected run-times show

a smoother shape. In fact, a new distribution able to fit data
pretty well appear into scene - the Weibul distribution. sThi

The histograms of the run-times are depicted in Fig 2 (lef§PServation is strongly supported by the quantile plotsaeg

Since there is no selective pressure, the population is HtT19- 2 (fight); the straight line in the plots suggest ttfz
pushed to good regions of the search space, making the se&ggcted run-time follows a Weibull distribution.

random (however, with memory due to code bloat). As aresult,To avoid subjectivity in analysis, we performed rigor-
the efficiency of the algorithm for finding a solution has beenus Kolgomorov-Smirnov (K-S) and Anderson-Darling (A-D)
reduced notably, and indeed only two out of the six probleng®odness of fit tests. Table IV summarizes the results rigyort
instances found enough solutions to be significant. Hendke Weibull parameters (k)) estimated using maximum-
only two problems are reported in this section, the artificidikelihood and the tests statistics, D and A. The tests were



TABLE IV . .
KOLMOGOROW-SMIRNOV (K-S) AND ANDERSON-DARLING (A-D) We used the same parameter settings shown in Table I,

GOODNESS OF FIT TESTSTHEY TEST WHETHER THE EXPECTED RUNTIME  With two differences: The tournament size values two and the

WITH TOURNAMENT SIZE ONE FOLLOWS AWEIBULL DISTRIBUTION. THE number of generations was modulated according the dlfillcult
TABLE REPORTS THE ESTIMATED PARAMETERS OF THE DISTRIBUTIOKK,

), THE K-S STATISTIC (D) AND THE A-D sTaTisTIC (A). THE asTerisk  Of finding a solution. The number of runs weie0 in almost

(*) DENOTES THAT A TEST PASSED WITHy = 0.05. all the problems, with the exception of the 11-multiplexeed
to the computational cost. Table V summarizes the number of
’ H k \ B \ D \ A \ runs, successful runs and success rate estimates.
Artificial ant || 1.43 | 355 | 0.03% | 0.26% We verified whether the expected run-time with low selec-
Regression || 1.42 | 393 | 0.034 | 0.28% tive pressure fit better a lognormal or Weibull distributidio

this end, Fig. 3 plots the histogram of the expected rungime

overlapping the lognormal and Weibull distributions. As in
conducted on50 random samples. Tests that could not reje@revious experiments, we fit the parameters with maximum-
the null hypothesis are marked in bold letters and asteridikelihood. Interestingly, the figure clearly shows thattiis
K-S and A-D tests did not found evidence to reject that thease the lognormal distribution fits data better than theoWki
Weibull distribution fits the expected run-times with= 0.05.  distribution in the six problem instances.

The Weibull distribution has some interesting propertieg t  Fig. 3 suggests that, in general, the lognormal distriloutio
it is worth to analyze briefly. The interpretation made by Blodits well the expected run-time with tournament size two.réhe
and Siitzle in [15] in the context of Stochastic Local Searchre problems where the fit is almost perfect (6-multiplexer)
might be applied here with some care. They suggested thdtile in others the fit is worse (11-multiplexer and 4-parity
the Weibull distribution in hard problems models the iditialn any case, the lognormal distribution fits our data bettant
search phase, which is not present in easy problems. Ttiie Weibull. Therefore, in presence of selective pressauen
conjecture cannot be directly applied to GP because of tifiat is small, the lognormal distribution is a better altative
obvious differences in the algorithms, but can be adapted. to model the expected run-time than the Weibull in the six

The Weibull distribution asymptotically approximates th@roblem instances covered in this study.
exponential distribution. In fact, Weibull is a generatina Finally, we compare the resulting run-time distributions
of the exponential distribution. Given enough time, if thebtained with different tournament sizes. Fig. 4 contahes t
algorithm without selective pressure does not find a satutiokernel plots of the algorithms of the expected run-times.
its expected run-time would become an exponential randdusing the algorithms instead of the raw run-times eases the
variable. And this is interesting, because the exponedig&l comparison and let the visual identification of lognormal
tribution is the only continuous memoryless distributidinis  distributions, which must appear as normal.
is an observation with practical consequences, given tlet t The plot in Fig. 4 reveals some interesting facts. High
algorithm has no memory, it cannot benefit from restarts.[1Mdelective pressure have a positive effect from the run-time
This observation makes sense in a scenario without sedectperspective, using a tournament size of seven reducesithe ru
pressure, where population is selected at random. time mean in all the studied cases. However, this observatio

The Weibull distribution suggests an exponential should be taken with care; we should not conclude that high
memoryless- behavior in large expected run-times, but thEslective pressure enhance the search process as a galeeral r
interpretation does not hold in low (non-exponential) run- The shape of the distributions in Fig. 4 suggests that the
times. In other words, when the run begins, it has memoryn-time distribution without selective pressure has &dit
but later it tends to be memoryless. The presence of memargture. With some exceptions, almost the only difference
cannot be explained by the selection, but there is one ®PBtween the distributions with tournament size two andrseve
characteristic that introduces memory in the algorithmnevés the mean, both generate similar variances and shapes.
in absence of selective pressure: The size of the trees ebarldowever, when the tournament size equals one, the resulting
along the run even when there is no selective pressure. Tdistributions clearly have negative skews, which is incatiap
is an issue that probably deserves some future research. ble with a normal nature. This gives credence to the fact that

at least in two problems, the lack of selective pressurectsfe

V. RUN-TIME DISTRIBUTION WITH LOW SELECTIVE the run-time distribution.

PRESSURE

In this section we examinate the run-time with the tourna- VI. CONCLUSIONS AND FUTURE WORK

ment size set to two. The lack of selective pressure detesnin This paper is an attempt to increase our understanding of
the expected run-time distribution, at least, in two praide GP by using run-time analysis. In particular, we have sulidie
We found that under usual circumstances the expected rimow the lack of selective pressure affects the time that the
time follows a lognormal distribution, but it can changelgorithm consumes to find a solution -i.e., the expected run
removing the selective pressure. It is worth to questiontwhi@me. We adopted an experimental perspective, trying to find
happens in an intermediate scenario with selective pressw statistical distribution able to model the expected ioret

but much lower than in the initial experiment. Hence, the In common parameter settings, the lognormal distribution
tournament size was set to two. fits quite well the expected run-time in the six GP problems



TABLE V
SOME EXPERIMENTAL PARAMETERS AND ESTIMATE OF THE SUCCESS RATTO FIND A SOLUTION WITH LOW SELECTIVE PRESSURETOURNAMENT SIZE
TWO). IT REPORTS THE NUMBER OF RUN$n), NUMBER OF SUCCESSFUL RUN$k), ESTIMATION OF THE SUCCESS RATE) AND WILSON INTERVALS

WITH oo = 0.95, LOWER(Lp) AND UPPER(Up) VALUES.

’ H Artificial ant ‘ 6-Multiplexer ‘ 11-Multiplexer ‘ 4-Parity ‘ 5-Parity Regression‘
n 500 500 200 500 500 500
k 51 450 63 258 262 314
P 0.102 0.9 0.315 0.516 0.524 0.628
Ly 0.078 0.871 0.255 0.472 0.480 0.585
Up 0.132 0.923 0.382 0.560 0.567 0.669
Artificial ant 4—Parity 6—Multiplexer
— __ 8 1
< < | S 7
j=g o =}
= o 0
o \ - L
4 ™ o
] g
o L—
S = 3
S S B
o
- — S
=)
o o o
o o o
Q = Q
2 ° T T T T © T T T T © T T
@ 0 200 400 600 800 50 100 150 200 0 50 100
8 Regression 5-Parity 11-Multiplexer
Sd - _ —
=) o A
— N
- 8 — 7[ N 8 —
g s i 5 )
o — Z o "
- ~ o
— ‘C_>| -
8 - 8 ] S |
(=} © i (=}
B VZ o o
o o o
= g g
e T T T T ™ o T T T T ™ o T T T T T

20 40 60 80 100

Expected runtime (generations)
Lognormal bull

200 400 600 800 1000

Weibu

200 400 600 800 1000
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we have studied. More interestingly, if the selective puess
is eliminated by means of setting the tournament size to omeents reported in related literature have shown a complex
the run-time distribution fits well a Weibull distributioM/e picture, where some statistical distributions are invdlirger-
should stress that this result applies to the two problenmerevh acting with the parameters settings. Several questiongirem
we found solutions, and therefore any generalization shbel open; probably the most important one is to understand why
the run-time distribution is affected by the lack of seleeti

done with care.

In any case, experiments shown in this paper, and exper-
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pressure. Curiosly, the distributions that use to appeaunn
time analysis, exponential, lognormal and Weibull disttibns

are the three key distributions in Reliability Theory to rebd
the survival time of components, in contrast, for instartoe,

[1] C. C. Ribeiro, I.

human creations modelling [19]. It is known that the failure

rate determines the distribution of the life time. Ironigal

(2]

identifying failure with success in GP could be a first step to

explain the expected run-time distributions. Other diostg to

explore would be to study the connection between the seéecti

pressure and the hardness of the problem.

ACKNOWLEDGEMENTS

This work has been partly supported by Spanish Ministr
of Science and Education under project ABANT (TIN2010

19872).

K]

)f4] A

REFERENCES

Rosseti, and R. Vallejos, “On the Use ofirR
Time Distributions to Evaluate and Compare Stochastic Loegréh
Algorithms,” in Proceedings of the Second International Workshop on
Engineering Stochastic Local Search Algorithresr. SLS '09. Berlin,
Heidelberg: Springer-Verlag, 2009, pp. 16-30.

J. E. Rowe and D. Sudholt, “The choice of the offspring plagion
size in the (1)) EA,” in Proceedings of the fourteenth international
conference on Genetic and evolutionary computation cenfar -
GECCO '12 New York, New York, USA: ACM Press, Jul. 2012,
p. 1349. [Online]. Available: http://dl.acm.org/citaticfm?id=2330163.
2330350

P. K. Lehre and X. Yao, “On the Impact of Mutation-
Selection Balance on the Runtime of Evolutionary Algoritims,
IEEE Transactions on Evolutionary Computationvol. 16,
no. 2, pp. 225-241, Apr. 2012. [Online]. Available:
http://ieeexplore.ieee.org/xpl/articleDetails.jgpA&arnumber=
5910379 &contentType=Journals&+Magazine§ &sortType=ask
_p\_Sequence&filter=AND(p\_IS\_Number:6176231)

. E. Eiben and M. Jelasity, “A critical note on experimahtesearch
methodology in ec,” irProceedings of the 2002 Congress on Evolution-
ary Computation (CEC2002) IEEE, 2002, pp. 582-587.



[5] T. Feo, M. Resende, and S. Smith, “A greedy randomized adapt
search procedure for maximum independent $@pérations Research
pp. 860-878, 1994.

[6] H. H. Hoos, “Stochastic local search - methods, models|iegtpns,”
Ph.D. dissertation, Technische Universitat Datatit Germany, 1998.

[7] H. Hoos and T. Sitzle, “Towards a characterisation of the behaviour of
stochastic local search algorithms for SARtificial Intelligence vol.
112, no. 1-2, pp. 213-232, 1999.

[8] D. F. Barrero, B. Casf@, M. D. R-Moreno, and D. Camacho, “Statisti-
cal Distribution of Generation-to-Success in GP: Applimatto Model
Accumulated Success Probability,” Rroceedings of the 14th European
Conference on Genetic Programming EuroGP 20%ér. LNCS, vol.
6621. Turin, Italy: Springer Verlag, 2011, pp. 155-166.

[9] D. Frost, I. Rish, and L. Vila, “Summarizing CSP hardnesghwi
continuous probability distributions,” ifProceedings of the Fourteenth
National Conference on Artificial Intelligence and Ninthr@erence on
Innovative Applications of Artificial Intelligence AAAI Press, 1997,
pp. 327-333.

[10] T. Stitzle and H. Hoos, “Analyzing the run-time behaviour of iteth
local search for the TSP,” il Metaheuristics International Conference
Kluwer Academic Publishers, 1999.

[11] M. Chiarandini and T. Sitzle, “Experimental evaluation of course
timetabling algorithms,” Intellectics Group, Computer ScierDepart-
ment, Darmstadt University of Technology, Darmstadt, Germaagh.
Rep. AIDA-02-05, April 2002.

[12] R. M. Aiex, M. G. C. Resende, and C. C. Ribeiro, “TTT
plots: a perl program to create time-to-target plot§ptimization
Letters vol. 1, no. 4, pp. 355-366, Oct. 2006. [Online]. Available:
http://link.springer.com/article/10.1007/s11590- 00&31-4

[13] H. Hoos and T. Sitzle, “Evaluating Las Vegas algorithms — pitfalls and
remedies,” inProceedings of the Fourteenth Conference on Uncertainty
in Artificial Intelligence (UAI-98) Morgan Kaufmann Publishers, 1998,
pp. 238-245.

[14] ——, “Characterizing the run-time behavior of stochadtical search,”
in Proceedings of the AAAI Conference on Atrtificial Intelligen1998.

[15] H. Hoos and T. Sitzle, “Local search algorithms for SAT: An empirical
evaluation,”Journal of Automated Reasoningol. 24, no. 4, pp. 421-
481, 2000.

[16] J. McDermott, K. De Jong, U.-M. O'Reilly, D. R. White, S. ke,
L. Manzoni, M. Castelli, L. Vanneschi, W. Jaskowski, K. Kiaw,
and R. Harper, “Genetic programming needs better benchmairks,”
Proceedings of the fourteenth international conferenceGemetic and
evolutionary computation conference - GECCO.'12New York, New
York, USA: ACM Press, Jul. 2012, pp. 791-799.

[17] E. B. Wilson, “Probable inference, the law of successiand statistical
inference,”Journal of the American Statistical Associatiam. 22, pp.
309-316, 1927.

[18] D. F. Barrero, D. Camacho, and M. D. R-Moreno, “Confidehater-
vals of Success Rates in Evolutionary Computation,GECCO '10:
Proceedings of the 12th annual conference on Genetic antiifiwoary
Computation Portland, Oregon, USA: ACM, 2010, pp. 975-976.

[19] I. Herraiz, D. Rodriguez, and R. Harrison, “On the sttial distribution
of object-oriented system properties,” Third International Workshop
on Emerging Trends in Software Metrics (WETSoM'201R)ne 2012,
pp. 56-62.



